Eucalyptus wandoo crown decline and its influence on wildlife.

This thesis is presented for degree of Doctor of Philosophy of Murdoch University

2013

Submitted by

Tracey Moore BSc (Hons), Murdoch University I declare this thesis is my own account of my research and contains work which has not previously been submitted for a degree at any other tertiary education institution.

Tracey Moore

Statement of contribution of others

Some data chapters in this thesis include work published in collaboration with my supervisors Dr Trish Fleming, Dr Leonie Valentine, Dr Michael Craig and Prof. Giles Hardy. Dr Halina Kobryn advised and helped perform the DMSI data preparation and collation in chapter 2. While undertaking this research, I was responsible for the project design, obtaining research funding, collecting all field data, statistical analysis and interpretation, and synthesis and preparation of manuscripts for submission to peer reviewed journals.

I obtained financial support from Murdoch University, WA State Centre of Excellence of Climate Change, Woodland and Forest Health, Bird life Australia, Bird Life Western Australia-Stuart Leslie Research Award, Holsworth Research Endowment and the Wildlife Preservation Society of Australia.

Declaration on ethics

All data collected adhered to the legal requirements of Murdoch University's Animal Ethics Committee (R2270/09) and Department of Parks and Wildlife animal ethics committee (Regulation 17: SF007629).

Signature

Date _____

Preface

Publications arising from thesis or under review

Chapter 2: Moore, T. L., Kobryn, H. T., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., Remote sensing does not provide accurate measure of tree condition for an open canopy woodland (*Eucalyptus wandoo*), draft

Chapter 3: Moore, T. L., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., (2013), Is the reptile community affected by *Eucalyptus wandoo* tree condition? *Wildlife Research*, 50(4), 358-366

Chapter 4: Moore, T. L., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., (2014), Does woodland condition influence the diversity and abundance of small mammal communities?, *Australian Mammalogy*, 36(1), 35-44

Chapter 5: Moore, T. L., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., (2013), Do woodland birds preferentially forage in healthy *Eucalyptus wandoo* trees? *Australian Journal of Zoology*, 61 (3), 187-195

Chapter 6: Moore, T. L., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., Signs of wildlife activity and *Eucalyptus wandoo* condition, *Australian Mammalogy*, accepted

Chapter 7: Moore, T. L., Valentine, L. E., Craig, M. D., Hardy, G. St J. E., Fleming, P. A., The effects of tree decline on the flowering phenology of *Eucalyptus wandoo*, Australian Journal of Botany, submitted

Photo credits: Tracey Moore, Trish Fleming and Tegan Douglas

Acknowledgments

Firstly, I would like to acknowledge my supervisors, without which I just could not have completed this work. Trish I have been your student since 2007 and have enjoyed every moment of it. I respect your honesty and hard working nature. I simply wouldn't be where I am now without your help and continual pushing me to work to higher standards. I really apologise to you for my annoying use of semicolons! I hope we are friends for many years to come. Mike, thanks your fantastic field work assistance, ideas and enthusiastic attitude to the work we have gotten through. I really enjoyed your company and continual support throughout this project. Giles, I don't think I ever heard you say a bad word about this work and your consistent positive nature was fantastic. Your uplifting attitude and encouraging encouragement has made it a pleasure to have you as a supervisor. Leonie, it was fantastic to have you on board with this project. I really enjoyed your help, company, useful criticisms and 'duck love'. I hope we can work together in the future, as you are a pleasure to work with. Quite often our plans are unspoken, yet understood. A lot would say that four supervisors are too many but I think we made a great team most of the time. Thank you for all you time and assistance.

Next I would like to thank my loving family. Mum, always there at the other end of the phone, willing to talk about anything. Always supporting me and ensuring I am happy and content. My brother Matt, I couldn't have put in all those pit fall traps without your muscles. You were also a great editor! Thanks for letting me whinge to you and making me lots of cups of tea. To my Poppy and Gran. I dedicate this work to you. I could not ask for better grandparents. I will be eternally grateful for your emotional (and financial) support. I can only hope I make you proud.

To my other half, Ben. Thank you for your support and help in writing up this work. Thank you for your calm voice of reason and logic in moments of panic. Thank you for looking after me and chatting to me about all things wildlife. If you ever try that trick about doctors on a plane you will be in trouble!

To all the dungeonites (past and present) and associated dungeonites. Penny, Narelle, Kat, Shannon, John (x2), Wil, Ivan, Bryony, Donna, Hannah and Chelsea, thank you for being there for questions, chats, complaining sessions and listening. It was so nice to go through this enjoyable time with you all. I am sure we will be there for each other far into the future. Tegan, thank you for your help and friendship in the field, lab and just in general. Thank you to all my other field work volunteers. I hope you had as much fun in the field as me.

To Dr Rebecca Fisher for being the GAM and GAMMs guru!

Thank you to Phill and Rusty for your support through the early days of this work.

Thank you to the Wandoo Recovery Group, in particular Liz Manning for your assistance in the field. Department of Parks and Wildlife (DPAW, previously Department of Environment and Conservation) districts- Hills and Great Southern for assisting work in Wandoo Conservation Park and Dryandra Woodland a pleasure. Thank you to DPAW- Swan Coastal District (in particular Craig Olejnik) for giving me the opportunity to work as the fauna conservation officer and complete my PhD simultaneously. Thank you to DPAW - Swan Region and Barb Wilson for your support in the last few months.

My furry and non-furry children. To my boys Luke, Cash and Lucky, you will never know how important you are to me and how you made stressful days disappear. Suzie for being my little support crew through lots of changes. Most would say finishing a thesis and having a baby are almost impossible. Baby girl Annabelle your happy and easy going nature (and ability to sleep a lot) meant I could finish my thesis without too much stress. I hope you won't tell me I'm a terrible mother in the future for dragging you out in the field. Most one year olds can't say they have been pitfall trapping, mist netting and cage trapping.

Abstract

A decline in the condition of forests and woodlands is a worldwide phenomenon. In the south west of Western Australia, declines of *Eucalyptus wandoo* have been noted since the 1980s and more recently in the 2000s. There is a knowledge gap regarding the relationship between the effects of tree decline and wildlife. This study aimed to help close this knowledge gap and provide insight to the effects of tree decline on fauna. At two reserves in Western Australia (Dryandra Woodland and Wandoo Conservation Park) 24 sites of pure *E. wandoo* stands were used to investigate this relationship.

Firstly, on-ground and remotely sensed methods of canopy assessment in *E. wandoo* were compared. The open canopy of *E. wandoo*, the spatial heterogeneity and cyclic decline, as well as the expression of recovery symptoms (e.g. epicormic growth) has meant that remote sensing methods are limited in their ability to reflect the on-ground changes noted and were not used in the following chapters.

Reptiles, mammals, birds, vertebrate foraging activities and reproductive efforts of *E. wandoo* were related to *E. wandoo* condition and the changes in the surrounding habitat. Healthier patches of *E. wandoo* that were longer unburnt with higher levels of site litter had more reptile species and higher abundances. Site litter cover, crown dieback, understorey vegetation cover and tree density influenced the abundance and species richness of small mammals. Three focal bird species weebills (*Smicrornis brevirostris*), rufous tree creepers (*Climacteris rufa*) and yellow-plumed honeyeaters (*Lichenostomus ornatus*) were influenced by *E. wandoo* condition according to their individual ecology. Vertebrate activities and the tree and habitat characteristics were related, with more diggings and scats present underneath healthier *E. wandoo* trees. Lastly, *E. wandoo* condition, weather, time since last fire and tree size were factors related to the reproductive cycle of *E. wandoo* trees from this study.

Eucalyptus wandoo decline aetiology differs to other eucalypt species in Western Australia such as *Eucalyptus marginata* and *Eucalyptus gomphocephala* by its lack of severity, cyclic recovery and spatially heterogeneous nature. These features of *E. wandoo* decline meant that wildlife were influenced by the changes in their habitat as a result of the decline but no species were absent from declining sites. It is not certain that *E. wandoo* declines will maintain a heterogeneous, cyclic pattern, particularly as the causes of the decline are undetermined and many exacerbating factors such as a warming climate, reduced rainfall, land clearing and competing land uses are ever present.

Table of Contents

Statement of contribution	iii
Declaration of ethics	iii
Preface	iv
Acknowledgements	vi
Abstract	vii
Table of Contents	viii
List of Tables	xi
List of Figures	XV

1	Chapter	r 1 General introduction	. 1
	1.1	Tree decline- what is it?	. 1
	1.2	Eucalyptus wandoo – study species	. 3
	1.3	Study site description	. 6
	1.4	Measuring tree decline	. 8
	1.5	Changes in the habitat from tree decline	. 9
	1.6	Reptiles and tree decline	10
	1.7	Mammals and tree decline	10
	1.8	Birds and tree decline	11
	1.9	Foraging resources and tree decline	12
	1.10	Flowering phenology of a declining tree species	12
	1.11	Thesis aims	13
	1.12	Overall plan of thesis	14
2	Chapter	r 2 Remote sensing does not provide accurate measure of tree condition	
	for an o	ppen canopy woodland (Eucalyptus wandoo)	15
	2.1	Introduction	16
	2.2	Methods	18
	2.3	Results	22
	2.4	Discussion	28

3	Chapt	Chapter 3 Is the reptile community affected by Eucalyptus wandoo tree			
	condit	tion?			
	3.1	Introduction			
	3.2	Materials and methods			
	3.3	Results	41		
	3.4	Discussion	47		
4	Chapt	er 4 Does woodland condition influence the diversity and abundance of			
	small	mammal communities?	49		
	4.1	Introduction	50		
	4.2	Methods	51		
	4.3	Results	56		
	4.4	Discussion	61		
5	Chapter 5 Do woodland birds preferentially forage in healthy Eucalyptus				
	wande	<i>wandoo</i> trees?			
	5.1	Introduction	65		
	5.2	Methods	67		
	5.3	Results			
	5.4	Discussion	77		
6	Chapt	er 6 Signs of wildlife activity and <i>Eucalyptus wandoo</i> condition	80		
	6.1	Introduction	81		
	6.2	Methods			
	6.3	Results	86		
	6.4	Discussion			
7	Chapt	er 7 Tree decline and the flowering phenology of <i>Eucalyptus wandoo</i>			
	7.1 Ir	7.1 Introduction			
	7.2	Methods			
	7.3	Results			
	7.4	Discussion	105		

8	Chapte	r 8 General Discussion	110
	8.1	General outline	110
	8.2	Is Eucalyptus wandoo decline really a decline?	110
	8.3	Changes in Eucalyptus wandoo condition were not localised.	113
	8.4	Do environmental factors have the potential to exacerbate Eucalyptus	
		wandoo decline?	114
	8.5	Measuring the condition of Eucalyptus wandoo	114
	8.6	Variation in habitat due to changes in Eucalyptus wandoo condition	115
	8.7	Is Eucalyptus wandoo condition and the presence or activity of reptiles,	
		small mammals and bird related?	115
	8.8	Is Eucalyptus wandoo condition and digging or soil disturbance by	
		terrestrial vertebrates related?	116
	8.9	Reproductive effort of Eucalyptus wandoo	116
	8.10	Management Implications	116
	8.11	Future work	117
	8.12	Concluding Statement	118
9	Refere	nces	
0	Appen	dices	149

List of Tables

Table 2.1: Tree condition and physical tree variables estimated on 144 individual E.	
wandoo trees across 24 sites in Dryandra Woodland and Wandoo Conservation	
Park including Grimes tree condition measure (Grimes 1987), Whitford tree	
condition measure (Whitford et al. 2008) and USDA (Schomaker et al. 2007),	
three tree condition measures used by foresters in Australia and the United	
States to monitor tree condition on the ground	18
Table 2.2 : Principal components analysis (PCA) with varimax rotation including	
factor correlations, eigenvalues and percentage of total variance of all tree	
condition measures using 144 trees in the Dryandra Woodland and the Wandoo	
Conservation Park.	23
Table 2.3: Multiple regressions between 17 remote sensing methods and the on-	
ground tree condition measures (Grimes tree condition measure and Whitford	
tree condition measure, crown density, crown dieback, dead branches,	
uncompacted live crown ratio, epicormic growth and canopy cover) with	
covariates; site, time since last fire and DBH	27
Table 2.4: A review of other studies using remote sensing in different Eucalypt	
forests and woodlands around Australia with varying rainfalls (where the study	
did not note the annual rainfall, it was taken from the Bureau of Meteorology	
website http://www.bom.gov.au/index.shtml?ref=hdr), outlining the measures	
each study used, the outcomes and issues they had when using remote sensing	
to determine tree condition and cover.	31
Table 3.1: Tree condition variables estimated for 144 individual <i>Eucalyptus wandoo</i>	
trees in Dryandra Woodland and Wandoo Conservation Park.	38
Table 3.2: Habitat characteristics recorded at each of the 24 trapping sites at	
Dryandra Woodland and Wandoo Conservation Park.	39
Table 3.3: Generalised additive mixed models investigating the relationship between	
the habitat/tree condition variables (standardised β , <i>P</i> -value) and the overall	
reptile abundance, species richness and the abundances of five common skink	

species, namely Morethia obscura, Cryptoblepharus buchananii, Ctenotus	
schomburgkii, Lerista distinguenda and Menetia greyii	43
Table 3.4: Averaged standardised β values of the top models (with a delta Akaike	
information criterion adjusted for small sample size; Δ AICc of <2) explaining	
overall reptile abundance, species richness and the abundances of the five most	
common skink species.	44
Table 4.1: Details of tree condition variables estimated on Eucalyptus wandoo trees	
in Dryandra Woodland and Wandoo Conservation Park.	53
Table 4.2: Habitat and sampling characteristics recorded in each of the 24 trapping	
sites at Dryandra Woodland and Wandoo Conservation Park.	54
Table 4.3: Generalised additive models investigating the relationship (standardised β	
and P values) between the habitat and tree condition variables and mammal	
species richness, total mammal abundance (number of individuals, excluding	
recaptures), and abundance of Cercartetus concinnus, Antechinus flavipes and	
Sminthopsis grisoventer in Dryandra Woodland and Wandoo Conservation	
Park.	57
Table 4.4: The sum of the model-weighted standardised β values (βw_i) for each	
habitat variables in the best supported models to describe overall mammal	
abundance, species richness and the abundances of Cercartetus concinnus,	
Antechinus flavipes and Sminthopsis grisoventer.	58
Table 5.1: Characteristics of the three focal bird species examined in this study	
(Marchant et al. 1990) and the foraging substrate and tree health characteristics	
predicted to influence each.	68
Table 5.2: Tree condition characteristics measured on all trees (site, unused and	
selected trees). All tree condition measures were completed at an approximate	
distance of half the height of the tree in question	71
Table 5.3: Logistic regression (negative binominal) describing the differences	
between trees that were either not observed as being used as foraging substrates	
('unused' trees) or used by weebills (Smicrornis brevirostris), rufous	

treecreepers (Climacteris rufa) or yellow-plumed honeyeaters (Lichenostomus	
ornatus).	75
Table 6.1: Tree and habitat characteristics measured on the 96 trees at Wandoo	
Conservation Park and Dryandra Woodland.	85
Table 6.2: The number of diggings recorded from Wandoo Conservation Park and	
Dryandra Woodland (96 trees, total 960m ²) attributed to 6 vertebrates species	
(Macropus spp. includes two species) and unknown species over one year	86
Table 6.3: The number of scats collected from Wandoo Conservation Park and	
Dryandra Woodland from 12 species of known (Macropus spp. includes the two	
species) and unknown vertebrates over one year.	87
Table 6.4: Summary of mixed model ANOVAs demonstrating relationships between	
total diggings, Tachyglossus aculeatus (short-beaked echidna) diggings,	
Bettongia penicillata (brush-tailed bettong; at DW only) diggings, total scats,	
Trichosurus vulpecula (common brushtail possum) scats and Macropus spp.	
scats and tree and habitat characteristics, sample number and site in Dryandra	
Woodland and Wandoo Conservation Park (F values, P values, values in bold	
are significant)	88
Table 7.1: Mean, 95% Confidence interval (CI, + and -), average annual rainfall	
(mm), average summer rainfall (mm), average maximum and minimum	
temperaures (°C) in Wandoo Conservation Park (WCP) and Dryandra	
Woodland (DW) from 1991 to 2011.	101
Table 7.2: Summary of mixed model ANOVAs for canopy monitoring of	
Eucalyptus wandoo at 24 sites in Dryandra Woodland (DW) and Wandoo	
Conservation Park (WCP). T	103
Table 7.3: Summary of mixed model ANOVAs for seed trap monitoring exploring	
relationships between reproductive effort and tree characteristics, and location at	
24 trees in Dryandra Woodland and Wandoo Conservation Park (F values, P	
values, bold values indicate significance at P < 0.05)	103
Table 10.1: Total captures of all reptile species in the twenty four sites in Dryandra	
Woodland and Wandoo Conservation Park over 13, 440 trap nights	149

Table 10.2: Total captures of mammal species in 24 sites in Dryandra Woodland and	
Wandoo Conservation Park over 3456 trap nights	. 150
Table 10.3: Relationships between tree decline measures and habitat characteristics	
and reptiles, mammals, birds, digs, scats and flowering phenology at Wandoo	
Conservation Park and Dryandra Woodland	. 151

List of Figures

Figure 1.1: Worldwide examples of tree decline	2
Figure 1.2: The range of <i>Eucalyptus wandoo</i> in Western Australia shown in blue	
cross-hatching covering most of the West Australian farming region, from as	
north as Dalwallinu, east as Kellerberrin, south as Mount Barker and ranging	
west into the Perth hills.	4
Figure 1.3: Photographic descriptions of a healthy (a) and a declining (b) <i>E. wandoo</i> tree.	5
Figure 1.4: The location of the 24 sites in (a) Western Australia, (b) at Dryandra	
Woodland and (c) Wandoo Conservation Park.	8
Figure 2.1: Principal component analysis 1 and 2 indicating the spread of trees in	
Dryandra Woodland and Wandoo Conservation Park (a) by site and (b) by	
location (each data point indicates one of the 144 trees)	24
Figure 2.2: Relationships between on ground and remote sensing methods of	
assessing <i>Eucalyptus wandoo</i> tree condition in Wandoo Conservation Park and	
Dryandra Woodland: (a) median 2G-RBi and location, (b) canopy holiness and	
Whitford tree condition measure (box and whisker plot, range, quartiles, and	
median) in both locations (Dryandra Woodland- grey boxes; Wandoo	
Conservation Park- white boxes), (c) SD of NDVI and epicormic growth, (d)	
NDVI < 0.02 and epicormic growth, (e) NDVI < 0.02 and canopy cover, (f)	
NDVI < 0.02 and DBH, and (g) proportion of canopy that is NDVI < 0.00 and	
epicormic growth	26
Figure 3.1: Scatterplots showing reptile captures and time since last fire (years) (a)	
and site litter cover (b) and reptile species richness and time since last fire (c)	
and site litter cover (d).	45
Figure 3.2: Habitat factors that showed the strongest relationships with abundance of	
five of the most common skink species <i>Morethia obscura</i> (n=49 captures) and	
distance to wandoo (a), and coarse woody debris (b), <i>Crytoblepharus</i>	
<i>buchananii</i> (n=34 captures) and site litter cover (c), <i>Crytoblepharus buchananii</i>	

and time since last fire (d), Ctenotus schomburgkii (n=30 captures) and time	
since last fire (e), Lerista distinguenda (n=31 captures) and site litter cover (f)	
and Menetia greyii (n=20 captures) and time since last fire and (g).	46
Figure 4.1: The relationship between site litter cover and overall mammal	
individuals (a), and mammal species richness and site litter cover (b).	59
Figure 4.2: Habitat factors that showed the strongest relationships with abundance of	
three of the most common mammal species Cercartetus concinnus individuals	
and tree litter cover (a) and crown dieback (b); Antechinus flavipes individuals	
and Whitford tree condition measure (c), and coarse woody debris density (d);	
and Sminthopsis griseoventer individuals and epicormic growth (e), and crown	
density (f).	60
Figure 5.1: Numbers of observations of weebills (Smicrornis brevirostris; n=164	
obs), rufous treecreepers (Climacteris rufa; n=150 obs) and yellow-plumed	
honeyeaters (Lichenostomus ornatus; n=566 obs) broken down according to a)	
foraging height, or b) foraging substrate.	76
Figure 6.1: Tachyglossus aculeatus diggings (a), Bettongia penicillata diggings (b),	
Trichosurus vulpecula scats (c) and Macropus spp. scats (d) underneath 96 trees	
over 10 separate sampling events in 2010 and 2011 at Wandoo Conservation	
Park and Dryandra Woodland.	89
Figure 6.2: Relationships between total diggings and time since last fire a); and	
crown density b) underneath 96 trees over 10 sampling events in 2010 and 2011	
at Wandoo Conservation Park and Dryandra Woodland.	89
Figure 6.3: Relationships between Tachyglossus aculeatus diggings and time since	
last fire underneath 96 trees over 10 sampling events in 2010 and 2011 Wandoo	
Conservation Park and Dryandra Woodland.	90
Figure 6.4: Trichosurus vulpecula scats and the relationship with time since last fire	
underneath 96 trees over 10 sampling events in 2010 and 2011 Wandoo	
Conservation Park and Dryandra Woodland.	90
Figure 7.1: Maximum monthly average and minimum monthly average temperatures	
(°C; line graph) and monthly rainfall (mm; bar graph) for Dryandra Woodland	

and Wandoo Conservation Park from May 2010 to April 2011 and the	
respective long term averages (DW: 1913-2013, WCP: 1996-2013)	100
Figure 7.2: The percentage of canopy that was budding, flowering or fruiting as	
measured by the monthly canopy monitoring of <i>E. wandoo</i> trees in 24 sites at	
Wandoo Conservation Park (WCP; a) and Dryandra Woodland (DW; b), from	
May 2010 to April 2011(ten monitoring events)	102
Figure 7.3: Relationships between reproductive effort and individual <i>Eucalyptus</i>	
wandoo tree condition measures.	104
Figure 8.1: Decline cycle of <i>Eucalyptus wandoo</i> , from healthy to declining and	
recovering E. wandoo.	112
Figure 8.2: Photographs depict each stage of the $F_{\rm curr} dee decline and recovery$	
Figure 8.2: Photographs depict each stage of the <i>E. wandoo</i> decline and recovery	
cycle and the symptoms at each stage from Figure 8.1.	113