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Automatic Pectoral Muscle Segmentation on
Mediolateral Oblique View Mammograms

Sze Man Kwok, Ramachandran Chandrasekhar*, Member, IEEE, Yianni Attikiouzel, Fellow, IEEE, and
Mary T. Rickard

Abstract—Mammograms are X-ray images of the breast which
are used to detect breast cancer. When mammograms are ana-
lyzed by computer, the pectoral muscle should preferably be ex-
cluded from processing intended for the breast tissue. For this and
other reasons, it is important to identify and segment out the pec-
toral muscle. In this paper, a new, adaptive algorithm is proposed
to automatically extract the pectoral muscle on digitized mammo-
grams; it uses knowledge about the position and shape of the pec-
toral muscle on mediolateral oblique views. The pectoral edge is
first estimated by a straight line which is validated for correct-
ness of location and orientation. This estimate is then refined using
iterative “cliff detection” to delineate the pectoral margin more
accurately. Finally, an enclosed region, representing the pectoral
muscle, is generated as a segmentation mask. The algorithm was
found to be robust to the large variations in appearance of pectoral
edges, to dense overlapping glandular tissue, and to artifacts like
sticky tape. The algorithm has been applied to the entire Mammo-
graphic Image Analysis Society (MIAS) database of 322 images.
The segmentation results were evaluated by two expert mammo-
graphic radiologists, who rated 83.9% of the curve segmentations
to be adequate or better.

Index Terms—Automatic segmentation, cliff detection, mammo-
gram, pectoral muscle, straight line estimation.

I. INTRODUCTION

X -RAY mammography is the most widely used method to
screen asymptomatic women for early detection of breast

cancer. The large number of mammograms generated by popu-
lation screening must be interpreted and diagnosed by relatively
few radiologists. It is considered that the use of computerized
mammographic analysis will make a vital contribution to easing
the increasing workload and assisting in the detection of breast
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cancer. We contend that before the digitized mammogram is an-
alyzed by computer, it must be segmented into its representa-
tive anatomical regions. Three anatomical landmarks have to be
first extracted automatically: they are the breast border [1], the
nipple [2] and the pectoral muscle [3]. In this paper, we propose
a method for automatically segmenting the pectoral muscle on
mediolateral oblique (MLO) view mammograms.

When the MLO view is properly imaged, the pectoral muscle
should always appear as a high-intensity, triangular region
across the upper posterior margin of the image. The cranio-
caudal (CC) view is not considered in this paper because the
pectoral muscle is only seen in about 30%–40% of CC images
[4]. Several factors complicate the segmentation of the pectoral
muscle. Depending on anatomy and patient positioning during
image acquisition, the pectoral muscle could occupy as much
as half of the breast region, or as little as a few percent of it. The
curvature of the muscle edge is usually convex, but it can also
be concave, or a mixture of both. Although the pectoral muscle
boundary is perceived to be visually continuous by humans,
there are large variations in edge strength and texture. In many
cases the upper part of the boundary is a sharp intensity edge
while the lower part is more likely to be a texture edge, due
to the fact that it is overlapped by fibro-glandular tissue. In
addition, the muscle edge may be obscured by artifacts on the
digitized mammogram, such as sticky tapes. Because of all
these factors, automatic segmentation of the pectoral muscle by
computer is a demanding task.

Automatic pectoral muscle segmentation is useful in many
areas of mammographic analysis. The work of Gupta and
Undrill [5] indicates that mammographic parenchyma and the
pectoral region may have similar texture characteristics, causing
a high number of false positives when detecting suspicious
masses. In other words, the pectoral muscle could interfere with
automated detection of cancers. Also the area overlying the
pectoral muscle is a common area for cancers to develop and is
particularly checked by radiologists to reduce false negatives.
It is, therefore, necessary to segment out the pectoral muscle
before lesion detection, as stated in [6]. Similarly, exclusion
of the pectoral muscle is required for automatic breast tissue
density quantification [7], [8]. The pectoral edge is also used as
one of the axes in 3-dimensional reconstructions from multiple
mammographic views [9], [10]; and it is one of the pivotal
landmarks in mammogram-pair registration and comparison
[11]. Furthermore, it is recommended by radiologists that, for
a high-quality MLO mammogram, the pectoral muscle should
be seen to the level of the nipple or below [4], [12], [13]. Some
authorities have recommended, in addition, that the pectoral
margin should be convex [4], [12]; that the angle made by the
margin with the image edge should not be less than 20 [14];
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and that the quality of the pectoral margin may be assessed
on a numerical scale [13]. Hence extracting the pectoral edge,
as both straight line and curve, is particularly important in
automatic evaluation of mammographic adequacy [15].

A. Literature Review

The Hough transform, used by Karssemeijer [7] to detect the
pectoral edge, is a popular technique. This method assumes that
the pectoral edge is approximately a straight line oriented in
a certain direction. To ensure that the correct peak is selected
in the Hough space, gradient magnitude and orientation, length
of projected line, and corresponding pectoral area were taken
into account. Because of this careful selection scheme, the re-
sults were claimed to be very robust and reliable [7]. Other re-
cent studies based on the Hough transform include: Ferrari et
al. [16] who segmented mammograms into skin-air boundary,
fibro-glandular tissue, and pectoral muscle; Yam et al. [9] who
refined the Hough transform linear approximation into a curved
pectoral boundary using a dynamic programming method; and
Georgsson [10] who extracted the pectoral muscle by region
growing, but later found the Hough transform to be more re-
liable.

There are several other approaches to segment the pec-
toral muscle. Suckling et al. [17] segmented mammograms
into four major components: background, pectoral muscle,
fibro-glandular region and adipose region, using multiple,
linked self-organizing neural networks. Aylward et al. [18]
used a gradient magnitude ridge traversal algorithm at a small
scale to extract multiple initial points and then resolved the
resulting multiple edge definitions via a voting scheme. Their
method parallels that of Karssemeijer [7]. Saha et al. [8],
[19] reported a semi-automatic method that requires input
from an operator to locate the pectoral muscle; delineation is
then performed automatically. Chandrasekhar and Attikiouzel
proposed two techniques to enhance the pectoral muscle region
on mammograms: the extended Russ operator [20], and tunable
parametric edge detection [21], although final segmentation on
the enhanced images had not been carried out.

In summary, almost all of the previous work approximates the
pectoral edge as a straight line and then refines that straight line
into a more accurate curved boundary, if needed. The accuracy
of straight line approximation is usually good. With the Hough
transform, the pectoral muscle was segmented in 92.8% of the
mammograms tested in [7]; and the pectoral muscle was accu-
rately detected in 87.9% of the images within a difference of
1–3 mm in [16]. However the reliability of curve refinement has
not been specifically tested and reported in the literature. In our
approach, presented in this paper, this two-step process is taken
as the basis, and extended by iteration to confer robustness. But
the algorithms used by us to derive the straight line and the
curve are fundamentally different from existing methods. Sev-
eral techniques are also introduced to overcome failure due to
poor breast positioning and artifacts, and to validate the straight
line approximation before it is refined to a curve. The final seg-
mentation results have been thoroughly assessed by two mam-
mographic experts. An early version of this work was described
in [3].

Fig. 1. Flowchart for automatic pectoral muscle segmentation on MLO
mammograms. The image orientation and breast border extraction are
preprocessing steps that are not part of this algorithm.

II. OVERALL ALGORITHM

From the observations made in Section I regarding the ap-
pearance of the pectoral region, we frame the following four
hypotheses that form the foundation for the algorithm:

1) On mediolateral oblique mammograms, the pectoral
muscle is a roughly triangular region occupying a corner of
the mammogram.
2) The pectoral muscle is defined as a region of higher in-
tensity than the surrounding tissue.
3) The pectoral margin is characterized by a fairly sharp
change in intensity, i.e., it is an intensity edge.
4) The intensity edge can be located by fitting step functions
to a sequence of the intensity profiles which lie perpendicular
to the pectoral boundary. The step-transition point represents
the position of the edge.
Because the pectoral margin may be and is usually curved,

it is first estimated as a straight line, which is later refined to
a curve. The algorithm, therefore, consists of two main steps:
a) straight line estimation; and b) iterative cliff detection. The
flowchart of this algorithm is shown in Fig. 1.

There are two preprocessing steps: image orientation and
breast border extraction. The image is first oriented in portrait
mode to face the same direction for consistency, as shown
in Fig. 2. In the MIAS database [22], the image dimensions
and left/right labels are already given, so only image rotation
and mirroring are required. The breast border is then extracted
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Fig. 2. The mammogram is oriented so that the pectoral muscle is located at
the top left corner. The coordinate axes are directed as shown with the origin
also at the top left corner. The width and height of the whole image are denoted
by n and n , respectively.R is the initial region of interest, equivalent to one
quarter of the image. The straight line AB is an approximation to the pectoral
edge. The end-points of the breast border are C and D. s represents a search
path perpendicular to AB whereas s represents a rotated search path.

automatically by background modeling and subtraction [1]. The
accuracy of the extracted border does not significantly affect the
performance of pectoral muscle segmentation, since the breast
border is only used for validation and the endpoints of the
border are chosen cautiously (as explained in Section IV-B1).

The first part of the segmentation algorithm generates a
straight line approximating the pectoral edge. The initial
straight line estimation is carried out within a region of interest
(ROI). The straight line is then tested for validity. If valid, the
ROI is adjusted accordingly, and a second straight line estima-
tion is performed in the new ROI. If the second straight line is
also valid, it is used as the input to iterative cliff detection.

If the straight line is found to be not valid at any stage, the ROI
is shrunk to a smaller size and the estimation cycle repeated.
When the ROI is smaller than a certain size, the algorithm ter-
minates with no segmentation of the pectoral muscle.

The second part of the algorithm is iterative cliff detection
in which the straight line is refined to a curve that more accu-
rately depicts the pectoral margin. This is an iterative process
whereby the detected curve is fed back to the cliff detection
module for increased accuracy. Finally, the “triangle” with the
detected pectoral margin as hypotenuse, is closed to give a seg-
mentation mask for the pectoral muscle.

III. ORIENTATION AND NOTATION

In our segmentation algorithm, all digitized mammograms
are oriented so that the nipple faces the right, i.e., all the right
breast images are mirrored vertically. Therefore, all input im-
ages are always upright with the pectoral muscle at the top left
corner. The intensity of the image is denoted by in the
range . The origin of the coordinate system is at the top
left corner of the image, where is defined to be the horizontal
axis and to be the vertical one (see Fig. 2). The number of
pixels of the image in the and directions are denoted by
and , respectively. Parameters used in the algorithm are given

Fig. 3. (a) Pectoral and nonpectoral regions in the initial ROI, R . The spatial
overlap of pectoral muscle and glandular tissue can be seen in the lower portion.
The region boundary was traced out by hand. (b) Intensity histogram, h(i), of
R showing the intensity overlap of the pectoral (black) and nonpectoral (grey)
regions corresponding to (a). (c) Iterative threshold selection, where grey-levels
below 15% of I are excluded (left of dotted line); � and � are the mean
values of the background and object grey-levels, respectively; and t is the final
threshold.

in millimeters; they may be converted to pixels if divided by the
image resolution in mm/pixel.

IV. STRAIGHT LINE ESTIMATION AND VALIDATION

Straight line estimation is used to approximate the pectoral
muscle with a straight line. This algorithm is based on iterative
threshold selection and straight line fitting with a gradient test.
The result is then validated by a simple criterion, independently
of the straight line fit.

A. Straight Line Estimation

1) Defining the Region of Interest (ROI): Since the pectoral
muscle is located at the top left corner of the image, the top left
quarter of the image is taken to be the initial region of interest
(ROI), as shown in Fig. 2. It is assumed that the pectoral edge
appears in this ROI (partially, if not fully) and that it intersects
the top and left image edges. The first straight line estimation of
pectoral edge is performed in this ROI, which is represented by

where

and (1)

Fig. 4(a) shows the initial ROI of mammogram mdb227lm taken
from the MIAS database [22].

2) Iterative Threshold Selection: After setting the initial
ROI, the pectoral muscle (pectoral region) should be separated
from other tissues (nonpectoral region) as it has been done
manually in Fig. 3(a). However, determining a global threshold
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Fig. 4. Illustration of straight line estimation. (a) Initial ROI of MIAS image mdb227lm. (b) Median filtered binary image produced by iterative threshold selection.
(c)M (y), obtained by tracing the border of black region. Its gradient is computed in the sliding window. (d)M (y), result of removing positive gradient segments,
with the largest area under the curve shaded. (e)M (y), selected for straight line fitting. (f) Straight line approximation to the pectoral edge.

automatically is not straightforward. In many MLO mammo-
grams, the lower portion of the pectoral muscle is spatially
superimposed on some glandular tissue known as the “tail of
Spence” [4]. Also, the image intensity of the glandular tissue
can be very near or identical to that of the pectoral muscle,
causing intensity overlap of the pectoral and nonpectoral re-
gions in the histogram [see Fig. 3(b)].

Due to both spatial and intensity overlaps of the two regions,
it is not always possible to find a single threshold that com-
pletely separates the pectoral muscle from other tissues. How-
ever, iterative threshold selection can be used to optimize the
conversion of the grey-scale image to a binary image in the sense
that the image average luminance is preserved; this is explained
and mathematically proven in [23]. This method usually works
well even if the histogram is not bi-modal [24, p. 129]. For the
images affected by intensity overlap, iterative threshold selec-
tion is less likely to over- or under-estimate the threshold when
compared with other techniques that place the threshold at the
valley between two peaks in the histogram.

The algorithm given below has been slightly modified from
that given in [24, pp. 129–130] and assumes that the image has
two regions of dominant grey-levels:

i) All grey-levels below 15% of are
removed from the histogram, , of the
region . It is assumed that the non-
breast background and the majority of the
breast-edge tissue have been excluded to
ensure that the segmentation result is
more reliable.
ii) A threshold is determined as the
mean of all remaining pixel values in

(2)

iii) The region is segmented into
background and object by thresholding at
.
iv) The mean values of the background and
object grey-levels, denoted by and ,

respectively, are calculated by the fol-
lowing equations:

(3)

v) is then updated as the mid-point of
and

(4)

vi) If the new remains unchanged, it
is the final threshold; otherwise steps
iii)–vi) are repeated.

3) Pixel Selection: After thresholding, the edge of the pec-
toral muscle has to be traced out on the binary image [Fig. 4(b)]
by a pixel selection operation. First, impulse noise on the binary
image is removed by applying a 5 5 median filter. Then each
horizontal line of the binary image is scanned from left to right,
and the first background pixel on each scan line is selected. The
positions of all the selected pixels define the function ,
that roughly represents the pectoral edge.

4) Gradient Test: If the selected pixels represent the
actual pectoral edge accurately, straight line fitting can be ap-
plied to it directly. However, in some cases, the curve
deviates toward the right and forms a concave segment, when-
ever the glandular tissue overlaps the pectoral edge. The devia-
tion from the actual edge may lead to an inaccurate straight line
estimation.

A gradient test was, therefore, designed to eliminate the con-
cave segments on the function . A sliding window of
height 20 mm and width equal to the ROI is used in the test.
As the window slides from top to bottom, a straight line is fitted
to the portion of that lies within the window, and the gra-
dient of the fitted line is computed [see Fig. 4(c)]. The gradient
function, , is given by

(5)

where and are the end-points of the fitted line,
and is the height of .
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Normally, is negative when is a decreasing func-
tion which represents the actual pectoral edge. If there is a de-
viation from the pectoral edge, becomes positive. Hence
in order to eliminate the concave deviations, is set to
zero whenever is nonnegative. Consequently the remaining
pixels form a new function , which may consist of dis-
continuous segments. Note that is undefined at both ends
of the ROI and would not be set to zero there.

5) Straight Line Fitting: Although the concave deviations
have been removed, some small, discontinuous segments left
in may also affect the accuracy of the straight line esti-
mation. Therefore, only the continuous segment with the largest
area under the curve [shown shaded in Fig. 4(d)] is used for
straight line fitting because it is most likely to be the actual
pectoral edge. This segment is represented by a third function

in Fig. 4(e). Straight line fitting with least squared error
is then applied to and results in the first straight line ap-
proximation to the pectoral edge, as shown in Fig. 4(f). This line
is shown as in Fig. 2.

B. Straight Line Validation

1) Validation Criterion: A simple criterion is used to vali-
date the straight line estimation. Line must intersect the top
and left image edges inside the breast region, but the intersec-
tions may not be inside the ROI. To define the breast region, the
breast border was extracted automatically by
polynomial modeling [1]. Since this method is not immune to
artifacts from tapes and misplaced labels, the end-points of the
breast border (denoted as and in Fig. 2) are determined by
the maxima within the top and left margins of the image

(6)

(7)

If for any reason the breast border is not available, and
can be replaced by and , respectively. The validation cri-
terion can then be described by the following expressions:

(8)

where , , , and are the coordinates
of points A, B, C, and D, respectively. If the line is valid, ROI
adjustment is invoked; otherwise ROI shrinking is performed.
Details of these two methods are given in the following sections.

2) ROI Adjustment: The first ROI, , is only an initial es-
timate of the location of the pectoral edge. The ROI has to be
adjusted so that the entire pectoral muscle is included, resulting
in a more accurate straight line approximation. Therefore, a new
ROI, , is defined so that runs diagonally from the top
right corner to the left bottom corner in , i.e.,

(9)

Then, a second straight line estimation is performed on , fol-
lowing the same procedure as described in Section IV-A. The
result is used to update . If the new straight line is also valid,
it represents the best approximation to the pectoral edge from
this stage of the algorithm; it is then ready to be refined into a
curve by the iterative cliff detection, which is described in later
sections.

3) ROI Shrinking: ROI shrinking is used when the straight
line estimation is not valid. The result of invalid estimation
could be due to internal texture or large artifacts on the pectoral
muscle, but in most cases, the main cause is the breakdown of
the assumption that the pectoral muscle occupies approximately
half of the ROI. This smaller than expected pectoral muscle
leads to an underestimated threshold. Shrinking the ROI so that
the assumption is upheld is the basis for this step. If is the
current ROI, then the new ROI, , is defined as the top left
quarter of , i.e.,

(10)

The same straight line estimation (described in Section IV-A) is
performed on the new ROI in the hope that the result would be
valid. The smallest possible ROI in this algorithm is , which
is 1/256 of the original image size. If no valid straight line is
found after is used, it is concluded that the pectoral edge
cannot be detected, perhaps because it is absent altogether from
the mammogram.

V. ITERATIVE CLIFF DETECTION

Cliff detection is designed to refine the straight line approxi-
mation into a curve that delineates the pectoral edge more accu-
rately. The resulting curve is further refined by applying cliff de-
tection multiple times; hence it is an iterative process. Finally, a
roughly triangular region is enclosed to represent the segmented
pectoral muscle.

A. Cliff Detection

Cliff detection is performed on the whole mammogram and
not on any ROI. It consists of four steps:

1) Defining Search Paths: If the straight line estimation is
accurate enough, the actual pectoral edge should be in close
proximity to . Therefore, search paths are used to find the
exact position of the muscle edge in the vicinity of the straight
line. The whole image is first smoothed by an average filter of
size . On every pixel of , a search path of length
is defined so that it is perpendicular to and the distances on
both sides of are equal.

However, there is an exception at the image edges. Part of
a search path could lie outside of the image if it is placed per-
pendicularly to . In such cases, the search path is rotated in
the appropriate direction so that its outlying end-point is moved
back into the range of the image, just touching the image edge
[see Fig. 7(a)].

An example of perpendicular and rotated search paths is
shown as and , respectively, in Fig. 2. The rotated search
paths may overlap each other, but this is acceptable. Although
other orientations for the search paths were tried, the perpen-
dicular orientation gave the best results, and was best suited to
detect the intensity edge representing the pectoral margin.

Keeping the search path in full length is important because
search path length and intensity surface smoothness are related.
The smoother the intensity surface, the longer the search path
that should be used to detect the intensity cliff. That is why
search path length, , and smoothing filter size, , are reduced
together in each iteration (see also Section V-B). Experiment
has shown that shortening the search path at the image edge
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Fig. 5. Comparison of intensity profiles of original and smoothed images.
Only every 20th profile is shown here.

results in less accurate cliff detection; while rotating the full
length search path has a higher chance to include the cliff in
the intensity profile.

2) Extracting Intensity Profiles: The next step is to extract
intensity profiles along the search paths. The intensity profile,

, is a function that represents the cross-section of the
smoothed image surface on each search path. If there is a
pectoral edge, a significant intensity drop, or a cliff, is expected
on the intensity profile. Cliff detection is actually designed to
locate the intensity cliff of the pectoral margin from a collection
of intensity profiles across the straight line . Fig. 5 illus-
trates the difference between intensity profiles of the original
and smoothed images.

3) Determining Cliff Locations: The determination of the
spatial coordinates of the intensity cliff is the next step in the
algorithm. It was observed that most of the smoothed profiles
exhibit a typical sigmoidal shape with various slopes and in-
tensity changes. However, that typical shape did not necessarily
appear in all profiles, as may be seen in the two rightmost pro-
files in Fig. 5(b). To confer robustness on the algorithm, it was
decided to locate the cliff by fitting the smoothed profile to a
sigmoid function.

This sigmoid function, , is a hyperbolic
tangent function

(11)

where and are the maximum and minimum intensi-
ties in , and and are fitting parameters solved by least
squared error, i.e., is mini-
mized. Fig. 6 shows a plot of the sigmoid. The cliff location, ,
is determined at the point of inflection of , i.e.,

if
if
if

(12)

Fig. 6. The sigmoid model, S(k), where � and � are fitting parameters; p
and p are the maximum and minimum values of the smoothed profile,P (k),
respectively; 2d is the length of the corresponding search path. The point of
inflection at k = �=� is assumed to be the cliff location on the intensity profile.

The cliff locations of all the extracted profiles are marked on
a blank image, which has the same size as the original [see
Fig. 7(b)]. This set of cliff locations is denoted by .

4) Smoothing the Detected Curve: The next step is to ex-
press the set of cliff locations as a function of . This is done
by eliminating certain cliff locations from , and adding inter-
mediate values where necessary. If there is more than one cliff
location for a given value on a horizontal scan line, only that
with the largest value is retained; the others are eliminated.
On the other hand, if there is no cliff location for a given
value on a horizontal scan line, two-point linear interpolation
is used to generate an intermediate point. The resulting function
is smoothed by a 24 mm wide moving-window average filter.
Also, two strips of padding, 12 mm each, and parallel to line

, are added at both ends of the function to reduce distortion
[see Fig. 7(c)]. This smoothed function is called the detected
curve and is the output of cliff detection.

B. Iterative Refinement

Cliff detection can be applied iteratively to refine the detected
curve. Since the image is smoothed before determining cliff lo-
cations, the sharpness of the pectoral edge is reduced, and hence
the detected curve from the first cliff detection may be slightly
inaccurate. Two previously defined variables of the algorithm,

and , are set to 4 and 8 mm, respectively, in the first cycle
of cliff detection. In the next iteration, is decremented by 1
pixel and by 2 pixels. Search paths are defined in the same
way, but this time on the detected curve rather than the straight
line. The same procedure is carried out as described in Sec-
tion V-A to produce a new curve. The iterative process stops
when either or is reduced to 1 pixel. During the curve refine-
ment, the image surface is gradually sharpened together with a
reduction in the maximum search distance. Consequently the
final detected curve delineates the pectoral edge to a higher de-
gree of accuracy. The final segmentation result for mammogram
mdb227lm is depicted in Fig. 7(f).

C. Region Enclosing

Since the detected curve is a function of , its top end always
coincides with the top edge of the image. However, in some
cases, its bottom end may not be aligned with the left edge of
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Fig. 7. Illustration of iterative cliff detection. (a) Search paths placed across the straight line AB (only every fifth path is shown). (b) All the detected cliff
locations. (c) Two pieces of padding, parallel to the straight line, are added at both ends of the detected curve for smoothing. (d) Detected curve after first iteration.
(e) Detected curves after 1st, 5th and 9th iterations, respectively, from left to right. (f) Final segmentation of the pectoral muscle.

Fig. 8. (a) Pectoral muscle of MIAS image mdb215ll. (b) A straight line
parallel to AB is extended from the end of detected curve (marked by arrow).
(c) Enclosed region for final segmentation.

the image. In order to form a closed region, the bottom end is
extended by a straight line parallel to (Fig. 2), after the
final iteration, if necessary. The extended curve is then smoothed
again by the 24 mm average filter. Finally, this enclosed region
can be used to segment the pectoral muscle on the mammogram.
It is pointed out that this extrapolation has been deliberately
chosen to guarantee region closure using a line segment that is
consistent with the overall direction of the pectoral margin. An
example is illustrated in Fig. 8.

VI. EXPERIMENTAL SETUP

This new method for pectoral muscle segmentation was tested
on 322 digitized mammograms from the MIAS database [22].
The original 50 images were low-pass filtered and
reduced in resolution to 400 . The original bit-depth
of 8 bits [0–255] was retained.

Two expert mammographic radiologists were invited to as-
sess the goodness of the segmentation; one of them is the last
author of this paper. At the beginning of the assessment, they
were acquainted with the purpose of segmentation, in order to
better objectify the results and ensure consistency, thus:

The purpose of the segmentation is to localize the pectoral
margin with sufficient accuracy so as to segment out the

“pectoral triangle” on mediolateral oblique mammograms.
This will facilitate exclusion of muscular tissue with
nonexclusion of parenchymal tissue, mammogram density
analysis, parenchymal characterization, mammogram
adequacy determination via nipple to pectoral margin
perpendicular lines, etc.

The radiologists were then presented with the original mam-
mograms and two types of segmented images: the straight line
and curve segmentation of the pectoral muscles generated by
straight line estimation and cliff detection, respectively. The
segmented images were displayed on a computer screen in a
random order. The segmentation boundary was colored in red
and superimposed on the original mammogram, without any
contrast enhancement. The radiologists were asked to assess all
the images of straight line segmentation first. After that the im-
ages of curve segmentation were assessed in the same manner.
For each image, the radiologists determined whether the seg-
mentation was acceptable, which is a binary decision, and then,
during a second pass, they rated the goodness of segmentation
using a five-point scale, as explained in Table I. A score of 3 or
less indicates an adequate segmentation.

VII. RESULTS

A. Radiologists’ Assessments

The numbers of straight line and curve segmentation images
accepted by the two radiologists are listed in Table II. It shows
that radiologist 1 rated as acceptable 243 (75.5%) images for
straight line segmentation and 280 (87.0%) images for curve
segmentation; while radiologist 2 rated as acceptable 170
(52.8%) images for straight line segmentation and 216 (67.1%)
images for curve segmentation. Although the segmentation
images accepted by radiologist 2 are fewer than those accepted
by radiologist 1, both radiologists agreed that after applying
curve refinement the number of acceptable images increased.

The significance of the improvement can be determined sta-
tistically by the McNemar test [25, pp. 75–80]. This test is useful
for detecting changes in initial and final responses (acceptable
images) due to experimental intervention (curve segmentation).
The test was performed using the contingency tables shown in
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TABLE I
FIVE-POINT ASSESSMENT SCALE WITH SCORE DESCRIPTIONS

TABLE II
NUMBERS OF SEGMENTATION ACCEPTED BY THE TWO RADIOLOGISTS

Table III. The McNemar chi-squared test statistics and approxi-
mated P-values are 33.23 and 8.18 for radiologist 1, and
24.11 and 9.11 for radiologist 2. Since the P-values are
very small in both cases, we conclude that curve segmentation
has improved the accuracy of pectoral muscle segmentation.
The contingency tables also show that after curve segmentation,
38 images were upgraded from not acceptable to acceptable for
radiologist 1, and 65 images for radiologist 2. On the other hand,
only 1 image was downgraded from acceptable to not acceptable
for radiologist 1, and 19 images for radiologist 2.

The radiologists’ five-point ratings for the 322 straight line
segmentation images and 322 curve segmentation images are
shown in Table IV. The results show that radiologist 1 rated the
straight line segmentation adequate or better on 243 (75.5%)
images and the curve segmentation adequate or better on 286
(88.8%) images. The same figures for radiologist 2 are 197
(61.2%) and 258 (80.1%), respectively. Again, the ratings of
radiologist 2 are lower than that of radiologist 1, but in both
cases the ratings were improved (by 13.3% and 18.9%) after
applying curve segmentation. By taking the average score of
each image, 67.4% of the straight line segmentation and 83.9%
of the curve segmentation were rated adequate or better ( ).

Furthermore, after curve refinement, the ratings given by
radiologist 1 increased on 164 (50.9%) images, remained
unchanged on 141 (43.8%) images and decreased on 17 (5.3%)
images. The same figures for radiologist 2 are 147 (45.7%),

TABLE III
CONTINGENCY TABLES OF STRAIGHT LINE AND CURVE SEGMENTATION

TABLE IV
SEGMENTATION ACCURACY RATINGS BY THE TWO RADIOLOGISTS

152 (47.2%), and 23 (7.1%), respectively. Therefore, by re-
fining the straight lines into curves, almost half of the image
ratings increased by one level or more. These results once again
demonstrated that pectoral muscle segmentation was more
accurate after applying iterative cliff detection.

As mentioned previously in Section VI, the radiologists
assessed the images in two passes using two different scales.
Therefore, “acceptable” in Table II is not necessarily equivalent
to “adequate or better” in Table IV. The difference between the
two sets of results illustrates the uncertainty encountered in
human observer studies, especially when two different rating
scales are given.

The 5 5 contingency tables of the segmentation ratings are
shown in Table V to give the readers an insight into the correla-
tion or agreement between both radiologists. Since our 5-point
scale is an ordinal measurement, the Spearman rank-order cor-
relation coefficient [25, pp. 235–244], , was used to eval-
uate the association between the radiologists’ ratings. For the
straight line segmentation ratings, is 0.740 and the P-value is
4.54 . For the curve segmentation ratings, is 0.748
and the P-value is 6.27 . Since the P-values are very
small in both cases, we conclude that the positive correlation
between the ratings given by both radiologists is statistically sig-
nificant at the 1% level.

B. Algorithm Performance

The average processing time for a single mammogram was
around 5.9 s, in which 0.4 s was spent on straight line estimation
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TABLE V
CONTINGENCY TABLES OF RADIOLOGISTS’ RATINGS

and 5.5 s on iterative cliff detection. The computational time
for curve refinement is much longer than that for straight line
estimation because the former is an iterative process, in which
the whole image has to be smoothed multiple times with filters
of different sizes.

In straight line estimation, ROI shrinking was performed on
40 images, i.e., the straight line did not pass the first validation
in those cases. In the end, a valid straight line could be found
on 34 of those images: so shrinking the ROI is a necessary step
when the pectoral muscle is smaller than normal. The straight
line estimation was not successful on the other 6 images, hence
there was no curve segmentation for these images as well. In
addition, the curve extension used to enclose the pectoral re-
gion was performed on 195 images. The average length of the
extended line was approximately 5.5 mm, which is relatively
small on the mammogram.

Some examples of the final segmentation are shown in Fig. 9.
The full set of segmentation results are available online at
http://users.arcme.com/skwok/.

VIII. DISCUSSION

The algorithm is adaptive to variations in pectoral muscle
size, density and curvature. In an adequate mammogram,
the pectoral muscle should be visible down to the level of
the nipple [4]. In some extreme cases, however, the muscle
may appear on the mammogram as very small or very large.
Two examples of tiny and large pectoral muscles are shown
in Fig. 9(a) and (b). They were both segmented accurately
because multiple ROIs, from large to small, were used in the
straight line estimation. Also, there is a variation on the image
intensities of different pectoral muscles. We found that the
method of iterative threshold selection can adaptively compute
an appropriate threshold level for each image, provided that the
pectoral region occupies roughly 50% of the ROI. Furthermore
the segmentation method was accurate for tracing pectoral
boundaries of different curvatures, whether convex, concave
or both.

Sometimes there may be more than one layer of tissue in
the pectoral region and more than one edge may be depicted.

In such cases the straight line approximation is more likely to
be placed at the outer edge rather than at the inner edge. The
reasons for this are that 1) the straight line estimation method
uses histogram thresholding instead of edge detection to find
the edge; and 2) the straight line is fitted only to that segment of
the selected pixels which encloses the largest area. Therefore,
the outer edge is more likely to be chosen. Fig. 9(c)–(e) shows
pectoral muscles with internal edges of different edge strengths
and they are all delineated at the outer edges.

The results also demonstrate that the segmentation method
is robust against artifacts such as sticky tapes. Fig. 9(f) and (g)
show that although the top parts of the pectoral muscles are ob-
scured by tapes of different thickness, both were segmented suc-
cessfully. These images show one of the advantages of cliff de-
tection: the refinement of the straight line is restricted in certain
directions, since the search paths are set perpendicularly, and
only intensity decreases in the profiles are searched for. Also,
the detected curve in each iteration is smoothed so that no sharp
corners on the curve are allowed. More examples of different
kinds of small edges crossing the pectoral boundary are shown
in Fig. 9(h)–(j).

In Fig. 9(k), a very dense breast is shown and the lower half
of the pectoral muscle is almost completely obscured by other
tissues. In this case, the extrapolative power of the segmentation
method is demonstrated. The pectoral boundary was extended
following the direction of the estimated straight line. And the
refinement process did not alter the extended line significantly
since there were no other strong intensity changes within the
reach of the search paths.

One disadvantage of the proposed, intensity-based method is
its weakness in detecting texture edges. In some cases the pec-
toral boundary is not a clear intensity edge but a fuzzy texture
edge. Cliff detection is not a suitable method to detect edges
between different textures. However it can still be used to ap-
proximate the pectoral boundary based on the intensity changes
alone. An example is illustrated in Fig. 9(l).

Another shortcoming relates to the detection of vertical pec-
toral edges, which are excluded by assumption. Because a valid
straight line approximation is assumed to intersect the top and
left image edges, a vertical line cannot satisfy the validation cri-
terion. As shown in Fig. 9(m) the pectoral edge is almost vertical
but it was not segmented correctly.

A very poor segmentation is shown in Fig. 9(n), which is
a particularly difficult image due to the coarse texture in the
muscle region. Finally, no segmentation was produced for
Fig. 9(o). The pectoral edge of this image is barely visible. The
primary reason for no segmentation is that the pectoral muscle
does not exist on the image, or that a large part of the pectoral
margin is obscured by dense tissue.

The radiologists also made the following comments for
poorly segmented images. For some images, the straight lines
were placed parallel to the pectoral margins but not exactly
on them. Poor straight line estimation also resulted when
thepectoral margins were very curved. These kinds of inaccu-
racy, especially in the straight line estimation, were normally
corrected by the iterative refinement in curve segmentation [see
Fig. 10(a) and (b)]. However, in a small number of cases, some
straight lines completely missed the pectoral margins due to the
influence of the axillary fold, which appears as a high-intensity
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Fig. 9. Segmentation results on MLO mammograms from the MIAS database. The scores of each image rated by two radiologists are shown in [r ; r ]. All
images are shown in the same scale. There was no segmentation for (o).

triangular region, similar to the pectoral muscle [see Fig. 10(c)].
The radiologists also noted that the axillary fold should not nor-
mally be seen on the MLO view and that its presence is often
the result of poor positioning.

The proposed algorithm could be improved in future by in-
corporating a texture edge detector together with cliff detection.
This is particularly targeted at extracting the texture edge at the
lower portion of the pectoral muscle. Such a texture edge de-

tector should be sensitive to texture direction since the texture
direction of the pectoral margin is usually perpendicular to that
of the overlying glandular tissue. Also texture detection should
be carried out at higher image resolutions than the one used in
cliff detection.

Most of the other difficulties in segmentation result from a
poor positioning of the patient during image acquisition or to
poor image contrast. Thus, one way to overcome these problems
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Fig. 10. Comparison of straight line and curve segmentation results on mammograms from the MIAS database. The scores of each image rated by two radiologists
are shown in [r ; r ]. (a) The straight line (left) is roughly parallel to the pectoral margin but not exactly on it. This is corrected in curve segmentation (right). (b)
The pectoral muscle is poorly segmented by the straight line (left) but accurately segmented by the curve (right). (c) The axillary fold is mistakenly segmented by
the straight line (left) and hence the curve (right) is also inadequate. Moreover, hypothesis (2) is not valid for this image.

would be to ensure acquisition of good quality images in the first
place. We have suggested elsewhere [15] that automatic quality
assurance during image acquisition is a feasible solution to this
problem. When the breast is correctly positioned, a sufficient
amount of pectoral muscle should be seen to the level of the
nipple at an angle larger than 20 to the vertical edge [14]. When
the image is properly exposed at optimal contrast, the pectoral
muscle should be differentiated from other dense tissue more
easily.

IX. CONCLUSION

We have developed a new method for automatic segmenta-
tion of the pectoral muscle on the MLO views of mammograms.
The method consists of two major components: straight line es-
timation and iterative cliff detection. By approximating the pec-
toral boundary with a straight line and refining it iteratively to a
curve, it is possible to accurately delineate an enclosed pectoral
region. The method was adaptive to large variations in appear-
ance of the pectoral muscle and margin. The method remained
effective when parts of the pectoral edge were obscured by su-
perimposed glandular tissue or artifacts. The method was tested
out on the 322 digitized mammograms of the MIAS database
and two mammographic radiologists assessed the segmentation
results. Their findings show that segmentation accuracy was im-
proved after refining the straight line into a curve using iterative
cliff detection and that 83.9% of the curve segmentations were
adequate or better.
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