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ABSTRACT

Moringa leaf extract (MLE) has been shown to promote beneficial outcomes in animals and plants. It is rich in
amino acids, antioxidants, phytohormones, minerals, and many other bioactive compounds with nutritional and
growth-promoting potential. Recent reports indicated that MLE improved abiotic stress tolerance in plants. Our
understanding of the mechanisms underlying MLE-mediated abiotic stress tolerance remains limited. This review
summarizes the existing literature on the role of MLE in promoting plant abiotic stress acclimation processes.
MLE is applied to plants in a variety of ways, including foliar spray, rooting media, and seed priming. Exogenous
application of MLE promoted crop plant growth, photosynthesis, and yield under both nonstress and abiotic
stress conditions. MLE treatment reduced the severity of osmotic and oxidative stress in plants by regulating
osmolyte accumulation, antioxidant synthesis, and secondary metabolites. MLE also improves mineral homeos-
tasis in the presence of abiotic stress. Overall, this review describes the potential mechanisms underpinning MLE-
mediated stress tolerance.
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1 Introduction

Plant growth is hampered by abiotic stresses such as drought, extreme temperatures, flooding, salinity,
ozone, ultraviolet radiation, and heavy metals that together cause crop yield losses estimated to be up to 50%
worldwide [1]. Abiotic stresses disrupt normal growth, development, metabolism, and productivity. They
impact plants throughout development, from seed germination to maturity, disrupting a multitude of
physiological, biochemical, and molecular processes [2–6]. Drought- and saline-affected lands are
becoming more common across the world, a trend that is expected to continue [7], and agricultural lands
near urban centers continue to be polluted with heavy metals [8]. Approximately 21% of the agricultural
land area is affected by salinity stress [9]. Some predict that 30% of arable land will be made ill-suited
for agriculture by salinization by the end of 2028, and 50% by the middle of the twenty-first century [9].
Global temperature is expected to increase by approximately 3°C with CO2 concentrations reaching
approximately 500–1000 ppm by 2100 [10]. During abiotic stress, which is expected to be more common
with changing climates, plants accumulate reactive oxygen species (ROS) that cause physiological harm
[11,12]. For instance, salinity and drought [13,14], heavy metals [15] and cold stress [4] inhibit
photosynthesis and disrupt plant water relations and metabolic homeostasis.

Moringa oleifera L. (drumstick) is a cultivated species that belongs to the Moringaceae family [16]. It
originated in the sub-Himalayan region of India, Pakistan, Bangladesh, Afghanistan, and Egypt, but is now
found in many of the world’s tropical and subtropical regions [17]. Due to its exceptional nutritional and
medicinal properties, moringa has been used in agriculture as a yield enhancer and in medicine as a
nutritional supplement [18]. Extensive research into its chemical composition and medical applications
has been conducted, but the use of moringa in crop treatment for abiotic stress tolerance is a relatively
new research area. Moringa leaf extract (MLE) represents an organic and sustainable source of plant
growth-promoting compounds, growth regulators, osmoprotectants, antioxidants, secondary metabolites,
and mineral nutrients that promote plant resiliency to stress [19–21].

This review aims to discuss the use of MLE in protecting plants from environmental stress, summarizing
recent results that have investigated the mitigating effects of MLE on abiotic stress. MLE-induced plant
improvement under nonstressed conditions is also discussed. Finally, we present a mechanistic view of
MLE-induced crop defense. The following paragraphs of this review address the benefits of MLE on
osmolyte balance, antioxidant status, oxidative stress mitigation, mineral absorption, and phytohormone
control in plants.

2 Moringa Leaf Extract: Chemical Composition

Moringa leaf extract contains high levels of plant growth hormones, antioxidants, vitamins, secondary
metabolites, and minerals (Table 1) [22–24]. Growth hormones such as gibberellins, indole-3-acetic acid
(IAA), abscisic acid (ABA), salicylic acid (SA), and cytokinins, minerals such as sodium (Na+),
potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and manganese (Mn2+),
more than 40 natural antioxidants such as ascorbic acid (ASC), glutathione (GSH), β-carotene,
tocopherols, vitamins A, B, C, D, and K, and many secondary metabolites occur at high levels in MLE
[16,20,25–34]. Of particular note, plant growth-regulating cytokinins are present in the forms of zeatin,
dihydrozeatin and isopentyladenine [35,36]. Among these, zeatin contents remain at very high
concentrations between 5 and 200 μg g−1 [37,38]. Additionally, there are high levels of several
allelochemicals, including isothiocyanates and nitriles [39,40]. Of course, the chemical composition of
MLE can vary with developmental stage, tissue, and growing conditions [41].
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Table 1: Chemical constituents of moringa leaves

Name of chemicals Type of chemicals Amount References

Nitrogen Minerals (mg 100 g−1 DW) 1070 [16]

Calcium 364.5 [42]

Potassium 1500 [19]

Phosphorus 70.00 [16]

Manganese 9.58 [27]

Magnesium 76.6 [42]

Iron 7.00 [16]

Copper 4.40 [42]

Zinc 1.80 [42]

Sulfur 630 [19]

Sodium 1929.5 [43]

Amino acids Osmolytes (mg g−1 DW) 142.2 [21]

Proline 32.1

Total soluble sugars 198.6

Ascorbic acid Antioxidants (mg g−1 DW) 549.5

Glutathione 301.2

α-Tocopherol 0.035

DPPH-radical scavenging activity Antioxidant capacity (%) 79.6

Indole-3-acetic acid Phytohormones (mg g−1 DW) 0.83 [44]

Gibberellins 0.74

Zeatin 0.96

Abscisic acid 0.29

Salicylic acid 0.078 [45]

Phytates Phytochemicals and anti-nutrients
(g 100 g−1 DW)

2.59 [20]

Oxalates 0.45

Saponins 1.46

Tannins 9.36

Hydrogen cyanide 0.10

Anthraquinone 11.68

Alkaloids 3.07

Steroids 3.21

Terpenoids 4.84

Carotenoids 1.16
Note: DW, dry weight.
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3 Exogenous Application of MLE to Alleviate Abiotic Stress

Abiotic stresses such as salinity, drought, flooding, heat, cold and heavy metals inhibit the growth and
development of plants and reduce crop yield [46–48]. One possible solution to offset yield loss is the
application of organic biostimulants such as MLE, which is considered a more ecofriendly and
sustainable approach than chemicaclly synthesized fertilizers and protectants [49]. MLE can improve
seedling emergence, plant growth, development and yield during periods of abiotic and biotic stresses
[49]. In recent years, several studies have examined the mitigation of abiotic stress via exogenous
application of MLE, the results from which are summarized in Table 2. In the following sections, we will
discuss what is known regarding the impact of MLE on plants under various abiotic stresses.

Table 2: Plant responses to exogenous MLE application under abiotic stresses

Plant species Type of stress Exogenous MLE
application

Plant responses to exogenous
MLE

References

Zea mays (Maize) Drought (75%
& 50% FC)

1:30 dilution @ 25 mL
plant−1 as foliar spray

↑ LA, PH, Chl a and b contents
under 50% FC, RFWand RDW
under 75% FC

[50]

Triticum aestivum
(Wheat)

Drought (75%
& 50% FC)

1:30 dilution @ 25 mL
plant−1 as foliar spray

↑ POD, CAT, ASC and leaf K+

contents under moderate
drought, TPC under extreme
drought

[24]

Cucurbita pepo
(Squash)

Drought (60%,
80% & 100%
FC)

3.0% as a foliar spray ↑ Harvest index, WUE, Chl
fluorescence, RWC, and MSI,
photosynthetic pigments,
soluble sugars and proline

[51]

Glycine max
(Soybean)

Drought (40%,
60%, & 80%
FC)

1:30 dilution as a foliar
spray

↑ SL, RL, SDW, RDW,
photosynthetic pigments
↑ ASC, α-tocopherol, GSH,
GR, SOD, APX, sugars,
proline, and TPC
↓ MDA and ABA content
↑ IAA, GA3, N, P, and K+

content

[52]

Oryza sativa
(Rice)

Drought (75%
FC)

3% MLE as seed
priming

↑ Germination, growth, yield,
and photosynthetic pigments
↑ SOD, CAT, and APX activity
↓ H2O2 content

[53]
[54]

Zea mays (Maize) Full and deficit
irrigation
conditions

1:30 dilution as a foliar
spray

↑ Growth, grain yield,
photosynthetic pigments, RWC
and proline accumulation and
decrease MDA content

[55]

Phaseolus vulgaris
(Common bean)

Salinity (90
mM NaCl)

10 kg L−1 fresh leaf as
a foliar spray

↑ MSI and RWC, proline
content and antioxidant
enzyme activity.

[56]

(Continued)
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Table 2 (continued)

Plant species Type of stress Exogenous MLE
application

Plant responses to exogenous
MLE

References

Phaseolus vulgaris
(Common bean)

Salinity (100
mM NaCl)

500 g leaf crude
extract in 2 L water as
a presoaking solution

↑ Growth, higher
osmoprotectant concentration,
enzymatic and nonenzymatic
antioxidant activity, increased
K+/Na+

[48]

Phaseolus vulgaris
(Common bean)

Salinity (200
mM NaCl)

1:30 dilution as a foliar
spray

↑ Shoot and root length and
weight, higher photosynthetic
pigments and phytohormone
content

[31]

Triticum aestivum
(Wheat)

Salinity (4, 8
& 12 dSm−1)

1:30 dilution as a foliar
spray on tillering,
joining, booting and
heading stage

↑ Grain weight and kernel
yield, shoot K+ content, SOD
and POD activity.
↓ Shoot Na+ and Cl− content

[55]

Salinity
(0, 0.05, 0.1,
0.15, and 0.2
M NaC)

1:30 dilution (seed
soaking or foliar
spray)

↑ Shoot length, leaf number,
leaf area, dry weight

[57]

Cucurbita pepo
(Squash)

Deficit
irrigation
(100% , 80 or
60% of ETc)

3.0% as a foliar spray ↑ Growth and yield
characteristics, harvest index,
WUE, chlorophyll
fluorescence, photosynthetic
pigments, soluble sugars and
free proline, RWC and MSI.
↓ EL

[51]

Helianthus annuus
(Sunflower)

Salinity
(EC, 6.42–
6.48 dSm−1)

The MLE application
was used as seed
soaking or foliar spray.

↑ Growth and seed yield, seed
oil and protein content, and
antioxidant enzyme activity

[58]

Sorghum ×
drummondii
(Sudan grass)

Salinity (EC,
3.01, 6.12 and
12.33 dSm−1)

3% of MLE as a foliar
spray

↑ Chlorophyll content, nutrient
uptake, available N and P, and
fresh and dry weight

[59]

Ocimum basilicum
cv. Cispum (Sweet
basil)

Salinity (100
mM NaCl)

2.5%, 5.0%, 10% and
20% of MLE with
irrigation water

↑ Leaf area, shoot length, shoot
fresh weight, number of
branches, root length and root
dry weight, anthocyanin and
total carbohydrates content,
SOD, CAT, POD, APX and
ascorbic acid oxidase activity

[60]

Trigonellafoenum-
graecum
(Fenugreek)

Salinity (0, 50,
100 and 200
mM NaCl)

25 times diluted MLF
as a foliar spray

↑ Growth parameters [61]

(Continued)
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3.1 MLE in Drought Stress
Water accounts for 80%–95% of the fresh biomass of plants and plays a vital role in physiological

processes, including plant growth, development, and metabolism [66]. Thus, water scarcity or osmotic
stress is considered the main environmental constraint for crops that could destabilize world food security

Table 2 (continued)

Plant species Type of stress Exogenous MLE
application

Plant responses to exogenous
MLE

References

Moringa oleifera
(Moringa)

Salinity (3, 6,
10 and
14 dSm−1)

30 times diluted MLF
as a priming agent

↑ Germination, growth, yield,
Chl content, SOD, CAT, APX
and POD activity, and ASC and
TPC contents

[62]

Zea mays (Maize) Heat (7°C–10°
C higher than
ambient
temperature)

3% of MLF as a foliar
spray

↓ H2O2 and MDA contents
↑ ASC, TPC, niacin and
riboflavin contents

[46]

Phaseolus vulgaris
(Common bean)

Heat (45°C)
for 5 h for
2 days

1:30 of MLF as a foliar
spray

↑ SL, RL, FW, DW, Chl a and b
contents, phytohormone
content (IAA, GA3, ABA,
kinetin and benzyl adenin)
↓ Oxidative stress markers
(O2

•−, H2O2 and MDA)

[31]

Zea mays (Spring
maize)

Cold (12 ±
1°C)

3% (w/v) of MLF as a
priming agent

↑ Germination efficiency and
seedling growth

[63]

Gossypium
hirsutum (Cotton)

Heat (38/24°C
and 45/30°C)
for 7 days)

30 times diluted MLF
as a foliar spray

↑ Growth, yield, SOD and CAT
activities, leaf chlorophyll and
photosynthetic efficiency

[64]

Zea mays (Maize) Heavy metal
(1 and 0.5 mg
HgCl2 kg

−1

soil)

2.5% and 5% of MLE
as a foliar spray

↑ Seed germination, growth,
Chl pigment and TPC, Hg2+

phytoremediation potential

[47]

Phaseolus vulgaris
(Common bean)

Heavy metal
(1 mM CdCl2)

30 times diluted MLE
as a foliar spray

↑ MSI, RWC, proline content,
the activity of antioxidant
enzymes
↓ Cd2+ content

[56]

Sorghum bicolor,
Penisetum
typhoideum and
Sorghum sudanese

Soil and water
salinity in an
arid
environment

1:10, 1:20, 1:30, and
1:40 dilution as a foliar
spray

↑ Growth and forage yields,
inorganic elements, growth
hormone content

[65]

Note: LA, leaf area; PH, plant height; FC, field capacity; RFW, root fresh weight; RDW, root dry weight; POD, peroxidase; CAT, catalase; ASC,
ascorbic acid; WUE, water use efficiency; RWC, relative water content; RL, root length; SDW, shoot dry weight; GSH, glutathione; GR, glutathione
reductase; SOD, superoxide dismutase; APX, ascorbate peroxidase; TPC, total phenolic compounds; MDA, malondialdehyde; ABA, abscisic acid;
MSI, membrane stability index; IAA, indole-3-acetic acid; GA3, gibberellic acid; FW, fresh weight; DW, dry weight; EL, electrolyte leakage.
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[67]. Drought stress typically leads to a reduction in leaf size, stem elongation, root growth, and water use
efficiency (WUE) [50,55,68]. Other effects of drought include the reduction of photosynthetically active
radiation, a curtailed harvest index (HI) [69], metabolic disruptions [70], the inhibition of certain
enzymatic activities [24], the reduction of soil water potential, ionic imbalance and disturbances in solute
accumulation [71,72]. MLE has been shown to be an effective plant growth modulator during drought
stress events [73]. Foliar or root application of MLE led to the enhancement of leaf area, plant height
(PH), biomass production, RWC, WUE, MSI, and chlorophyll content in maize (Zea mays L.) [50,55],
Glycine max (soybean) [52] and Cucurbita pepo (Squash) [51] under drought stress. MLE application
increased the accumulation of osmoprotectants and enzymatic and nonenzymatic antioxidants such as
peroxidase (POD), catalase (CAT), ascorbate (ASC) and leaf K+ contents in Triticum aestivum (wheat)
under drought stress [24]. Moreover, MLE application increased total phenolic compounds (TPCs) in
wheat plants under extreme drought [24]. Electrolyte leakage (EL) along with morphophysiological trait
improvement was also observed after MLE application to drought-stressed squash plants [51]. Finally,
exogenous MLE application enhanced the yield of maize under drought stress [55].

3.2 MLE in Salinity Stress
Soil salinity can negatively impact crop yield by affecting growth parameters [74,75]. Salinity affects

plant growth by disrupting physiological and biochemical processes, particularly water relations and
nutrient balance [76]. Salinity can have major impacts on germination by altering seed imbibition due to
the lower osmotic potential of soil [77], changing nucleic acid metabolism and transcriptome profiles
[78,79], altering protein metabolism [80], and disturbing hormonal balance [81].

To help alleviate the harmful effects of soil salinity on crops, several growth regulators, osmoprotectants
and fertilizers have been successfully used [82], including MLE [83]. Previous research revealed that
moringa leaves contain high levels of essential plant nutrients, hormones, and antioxidants [84].
Therefore, MLE application improved salt stress tolerance and grain yield in wheat by enhancing seed
germination, protein synthesis, and antioxidant activities under salinity stress [28]. Foliar application of
MLE to wheat modulated antioxidants, proteins, and essential mineral content in a way that helped
ameliorate the negative effects of salinity stress [55]. Exogenous MLE application to salt stressed
Phaseolus vulgaris (common bean) led to increased shoot and root length and weight, a response
associated with higher photosynthetic pigments, membrane stability index (MSI), relative water content
(RWC) and phytohormone content [56,61]. Enhanced fresh weight, dry weight, mineral uptake such as
nitrogen (N) and phosphorus (P) uptake, and protection against photooxidative damage in chlorophylls
under salt stress conditions were also found in MLE applied to salt stressed Sorghum × drummondii
(Sudan grass) plants [59]. Salinity stress can trigger metabolic disruptions and arrest protein synthesis and
these effects are prevented by exogenous MLE, and that can play a key role in the signaling of plant
adaptive responses to salinity [61].

Seed priming with MLE improved salt tolerance in common bean by enhancing osmolyte accumulation,
chlorophyll pigments, enzymatic and nonenzymatic antioxidants, and K+ content [48]. Furthermore,
pretreatment of Moringa oleifera seeds with MLE improved seedling emergence and growth
characteristics, nutrient homeostasis, and superoxide dismutase (SOD) and catalase (CAT) activities under
salt stress [62]. Both foliar application and seed presoaking with MLE led to increased growth, yield and
changes in stem anatomy, including stem section diameter, average number of xylem vessels, average
thickness of xylem vessels, and average diameter of xylem vessels, in salt-stressed Helianthus annus
(sunflower) [58]. MLE-treated, salt-stressed sunflower plants showed higher antioxidant enzyme activity,
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proline and soluble sugar accumulation, and N, P, and K+ contents than non-MLE-treated, salt-stressed plants
[58]. Enhanced anthocyanin, total carbohydrate, and antioxidant potentials such as SOD, CAT, POD,
ascorbate peroxidase (APX) and ASC oxidase were also observed in MLE-treated Ocimum basilicum cv.
Cispum (sweet basil) plants under salt stress [60].

3.3 MLE in Temperature Stress
Global warming is posing a major concern for humanity by changing climate patterns and increasing

temperature. Heat stress severely impacts plant growth and development, threatening crop production and
food security [85]. Application of MLE has been shown to combat heat stress in maize plants by
reducing oxidative damage markers (hydrogen peroxide, H2O2 and lipid peroxidation products, MDA)
and enhancing antioxidant potentials such as ASC, TPCs, and niacin and riboflavin contents [46].
Additionally, MLE treatment enhanced growth and yield in heat-stressed Gossypium hirsutum (cotton)
plants by improving photosynthetic efficiency, causing higher chlorophyll content, and promoting higher
SOD and CAT activities [64]. MLE application also mitigated the growth inhibitory effects of heat stress
in common bean by enhancing the levels of IAA, GA3, ABA, kinetin and benzyl adenine and reducing
oxidative stress markers [31]. Finally, MLE has been shown to improve cold stress tolerance in spring
maize by improving the germination rate and growth [62].

3.4 MLE in Heavy Metal Stress
Heavy metals in excessive concentrations can disturb plant growth, development, metabolism, and

senescence [86]. Exogenous MLE has been found to increase the tolerance of plants to heavy metal
stress. Howladar [56] showed that foliar application of MLE treatment improved cadmium stress
tolerance; increased photosynthetic pigments, RWC, proline content, MSI and WUE; and decreased
electrolyte leakage (EL) in common bean [56]. Moreover, MLE application enhanced antioxidant enzyme
activities and reduced lipid peroxidation in cadmium-stressed common bean plants [56]. Bibi et al. [47]
demonstrated that MLE improved the germination, growth and chlorophyll content of maize seedlings
under mercury stress.

4 Possible Mechanisms of MLE-Mediated Abiotic Stress Tolerance

To explore the mechanisms underlying MLE-mediated abiotic stress tolerance, the following sections
summarize recent reports on the interaction of MLE with major osmolytes, mineral nutrients, secondary
metabolites, phytohormones, ROS signaling, and the modulation of antioxidants.

4.1 Influence of MLE on Osmolytes
The synthesis and accumulation of osmolytes, compounds that counterbalance osmotic pressure, are

among the first responses of host plants to osmotic stress caused by environmental challenges [87]. The
accumulation of solutes in plant cells undergoing stress conditions causes the osmotic potential of the
cells to become highly negative and leads to endosmosis of water to maintain cell turgor. This osmotic
adjustment is controlled by the accumulation of solutes/osmolytes [88] and is an important factor for
combatting drought [89,90] salinity [91], osmotic [92], heavy metal [93], temperature [94], light, and
pesticide stress [95] (Fig. 1). Upon perception of abiotic stress, signaling pathways induce transcription
factors that upregulate stress responsive genes related to biosynthesis and accumulation of osmolytes,
including free amino acids and their derivatives, carbohydrates and soluble sugars, polyols, polyamines,
free amines, and other secondary metabolites [87].
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A range of osmotically active molecules accumulate under drought stress. Among these, proline helps to
adjust the cellular osmotic balance, protect biological membranes, and stabilize enzymes and proteins by
detoxifying excess ROS [96]. Proline accumulation under stress conditions results from increasing
synthesis and degradation of proteins [97,98]. Numerous reports show that exogenous application of
MLE increases the abundance of proline and other osmolytes under various abiotic stresses (Table 3).
Treatment of sunflower with MLE via seed soaking or foliar spray led to increased total soluble sugar
and proline contents and resulted in improved sunflower growth, seed yield and oil content under salt
stress [58]. Similarly, MLE application improved osmolyte status in salt stressed Trigonellafoenum-
graecum (Fenugreek) [48], common bean [61], and Sudan grass [59], resulting in improved growth and
development of plants. In addition, the application of MLE to drought-stressed Zea mays enhanced
proline content [55]. MLE also induced proline and total soluble sugar contents in drought-stressed

Figure 1: Potential mechanisms of MLE-mediated abiotic stress tolerance in plants. MLE consists of a
complex blend of phytohormones, minerals, antioxidants and secondary metabolites that promote
enhanced phytohormone production, osmolyte accumulation, ion homeostasis and scavenging of reactive
oxygen species (ROS). MLE mediates the detoxification of ROS by triggering the water-water cycle and
the ascorbate-glutathione cycle and by promoting the accumulation of secondary metabolites in cells. It
also protects plants from overaccumulation of reactive carbonyl species (RCS) and reactive nitrogen
species (RNS). MLE, Moringa leaf extract; ABA, abscisic acid; AsA, ascorbic acid; GSH, reduced
glutathione; GSSG, oxidized glutathione; P5CS, Δ1-pyrroline-5-carboxylate synthetase; BADH, betaine
aldehyde dehydrogenase

Phyton, 2022, vol.91, no.8 1565



Glycine max (Soybean) [52] and Cucurbita pepo (Squash) [51] leading to improved growth and
development. Moreover, Zea mays subjected to chilling stress and treated with MLE showed an increase
in proline content [63]. The increase in proline could be due to enhanced gene expression of biosynthetic
genes that may be induced by MLE responsive phytohormones such as auxins, gibberellins, cytokinins,
and abscisic acid (Table 1; Fig. 1) all of which have been shown to promote osmolyte accumulation [96].
The proline biosynthetic genes P5CS1 and P5CS2 are up-regulated by auxins, while cytokinin
downregulates P5CS1 but upregulates P5CS2 in Arabidopsis [99–102] (Fig. 1). A gibberellic acid (GA)-
responsive element, GARE, is present upstream of SbP5CS. Proline biosynthesis is also modulated by
ABA-dependent pathways [100] (Fig. 1).

Application of MLE also promotes the accumulation of glycinebetaine, another important osmolyte
[103]. Glycinebetaine is synthesized from choline in a two-step oxidation by a ferredoxin (Fd)-dependent
choline monooxygenase (CMO) and a betaine aldehyde dehydrogenase (BADH) with a strong preference
for nicotinamide adenine dinucleotide (NAD+), typically via the unstable intermediate betaine [87].
Glycinebetaine biosynthesis is induced under abiotic stress after the application of the MLE component
ABA, which activates the GB biosynthetic enzyme BADH [104,105].

4.2 Influence of MLE on Mineral Nutrients
Treatment of plants with MLE can help support mineral homeostasis, which is critical for plants to

tolerate abiotic stresses [106]. Salinity stress is associated with the reduction of chlorophyll content
caused by excessive Na+ accumulation in leaves, which leads to reduced Mg2+ and downregulation of
chlorophyll biosynthesis [107]. Mg2+ deficiency can also disrupt the vascular system, transportation of
carbohydrates, and protein synthesis [108–110]. Moreover, salt stress can interrupt K+ and Ca2+ uptake
and transportation [111] and cause salt-sensitive plants to have lower K+/Na+ and Ca2+/Na+ under salinity

Table 3: Effects of exogenous MLE on various osmolytes under abiotic stress conditions

Plant species Stress Effects of MLE on osmolytes References

Helianthus annuus
(Sunflower)

Salinity ↑ Total soluble sugars (by 27.6%) and proline
content (by 62.4%)

[58]

Phaseolus vulgaris
(Common bean)

Saline, heat and
gamma ray

↑ Total soluble sugar (by 24.97%) [31]

Zea mays (Maize) Water stress ↑ Free proline (by 88%) [55]

Trigonellafoenum-
graecum (Fenugreek)

Salinity ↑ Free proline (by 35.48%), soluble sugars (by
24.34%) and total amino acid (by 63.8%)

[61]

Glycine max
(Soybean)

Drought ↑ Proline content (by 10.37%), total soluble sugars
(by 4.38%)

[52]

Phaseolus vulgaris
(Common bean)

Salinity and
heavy metal

↑ Proline content (by 16.75%) [56]

Zea mays (Maize) Chilling ↑ Total soluble sugars (by 60%) [63]

Cucurbita pepo
(Squash)

Drought ↑ Proline content (by 6.25%) and total soluble sugar
(by 5%)

[51]

Phaseolus vulgaris
(Common bean)

Salinity ↑ Soluble sugars (by 21.24%), proline content (by
52.23%) and glycinebetaine (by 0.62%)

[48]

Sudan grass Salinity ↑ Proline content (by 5.15%) [59]
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conditions [112]. The K+/Na+ ratio is an important factor for estimating plant growth rates, and increasing the
K+/Na+ and Ca2+/Na+ ratios leads to the activation of plant defenses [113–117]. However, antagonistic
relationships between Na+ and ions such as K+, Ca2+ and Mg2+ have been observed in salt-tolerant crops
[61,113,117,118]. These antagonisms were amplified in crops such as lettuce, wheat, okra, fenugreek and
Brassica juncea after the application of MLE [24,111,115]. This amplification resulted from increased
K+, Ca2+, Mg2+ and better maintenance of the K+/Na+ and Ca2+/Na+ ratios, which served to protect
photosynthetic pigments [31]. It is possible that components of MLE, such as hormones like IAA, GAs,
SA, and ABA, function to maintain ion homeostasis [21,119]. In plants under salinity stress, exogenous
application of auxins, ABA and SA have all been shown to enhance Ca2+ and K+ [120–122], while
application of GA and IAA enhance Mg2+ [120,121]. Additionally, MLE contains high levels of Mg2+,
Ca2+ and K+, which provides plants with greater exposure to these nutrients and promotes tolerance to
abiotic stresses [19,42].

4.3 Influence of MLE on ROS Signaling and Antioxidants
Redox homeostasis is fundamental to cellular function and integrity, and its regulation includes control

of ROS and modulation of the cellular redox state [123]. The equilibrium between the production and
scavenging of ROS such as singlet oxygen (1O2), hydrogen peroxide (H2O2), superoxide (O2

•
ˉ), and

hydroxyl radicals (•OH) is controlled by enzymatic and nonenzymatic antioxidants [123,124]. The
enzymatic antioxidants responsible for scavenging ROS are SOD, CAT, the ASC-GSH cycle enzymes
[APX, monodehydroascorbate reductases (MDHAR), dehydroascorbate reductases (DHAR), glutathione
reductase (GR)], peroxiredoxins (PRX), glutathione peroxidase (GPX), and glutathione-S-transferase
(GST), whereas the nonenzymatic antioxidants include more diverse compounds such as ASC, GSH,
phenolic compounds, alkaloids, nonprotein amino acids, and α-tocopherols [123,125–128]. Upregulation
of antioxidant enzymes occurs when plants are exposed to oxidative stress. This upregulation serves as a
proactive acclimation response that results in lower ROS levels and higher tolerance to conditions that
cause oxidative stress [123], and promoting this process can improve a plant’s tolerance and adaptive
capacity to abiotic stresses [129–131]. The primary mechanism by which plants balance ROS is the ASC-
GSH pathway [128,132], which involves the successive oxidation and reduction of ascorbate, glutathione,
and NADPH. The redox reactions are catalyzed enzymatically by APX, MDHAR, DHAR, and GR and
nonenzymatically by tocopherol, carotenoids, and phenolic compounds [128,132–134] (Fig. 1).

Table 4: MLE modulates antioxidants in plants under abiotic stress conditions

Plant species Stress Effect of MLE on antioxidants References

Trigonellafoenum-
graecum

Salinity ↑ Activity of SOD by 19.37%, CAT by 66.85%
↓ POD activity by 52.35%

[61]

Helianthus
annuus

Salinity ↑ SOD (70.2%), APX (100.4%), and GR (80.3%)
activities

[58]

Triticum aestivum Drought stress ↑ Activity of SOD by approximately 28%, CAT by
100%, ASC by 100% and POD by 81.8%

[24]

Triticum aestivum Salinity ↑ Activity of SOD by 66.67%, POD by 31.58%, and
CAT by 144.29%

[135]

Glycine max Drought ↑ Content of ASC by 2.31%, GSH by 8.44% and
activity of SOD by 7.67%, APX by 24.74%, GR by
0.47%

[52]

(Continued)
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Exogenous application of MLE to plants under abiotic stress can supplement antioxidants such as ASC
and GSH (Table 4). It is possible that MLE application directly supplements ASC and GSH and thereby helps
to improve abiotic stress tolerance. In various salt-stressed plant species, MLE promoted the activities of
SOD, CAT, APX, GR, and POD and led to higher ASC and GSH contents (Table 4). The enhanced
activity of the abovementioned enzymes resulted in a decline in oxidative damage to cells and growth
improvement, highlighting the direct involvement of MLE in stress mitigation [61]. The improved
antioxidant system in MLE-treated plants helps lower oxidative stress and peroxidation of lipids [136],
enhances biosynthesis of cysteine and GSH to maintain the GSH/GSSG ratio [137–139], increases the
accumulation of osmolytes such as proline and glycinebetaine [137] and α-tocopherol [140], all of which
help plants withstand abiotic stress.

The antioxidant α-tocopherol is a primary component of MLE (Table 1). Exogenous application of α-
tocopherol to plants under drought and salt stress promotes stress tolerance, enhances tocopherol content,
and decreases lipid peroxidation [141,142]. The upregulation of proline is also associated with H2O2

accumulation and the activity of antioxidant enzymes such as SOD, POD, APX and CAT under abiotic
stress [143]. Taken together, MLE application supplements the plants with antioxidants present in MLE
itself and increases endogenous antioxidant activity and production that ultimately helps plants withstand
abiotic stresses (Fig. 1).

4.4 Influence of MLE on Major Secondary Metabolites
Plants produce and accumulate high levels of secondary metabolites such as phenylpropanoids,

flavonoids, tannins, coumarins, and lignin precursors, a group of metabolites collectively known as
phenolics that are involved in scavenging free radicals and enhancing membrane stability under stress
conditions [98,144–146]. There are large quantities of phenolics in MLE (Table 1), and these have been
suggested to be responsible for the prevention of membrane leakage and lipid peroxidation observed in
MLE-treated, salt-stressed Phaseolus vulgaris plants [56]. MLE-treated Phaseolus vulgaris had higher
levels of phenolics, which enhanced salt tolerance and membrane stability by ameliorating ROS [135]
(Fig. 1). MLE application also enhanced carotenoids, which help protect proteins, DNA, and RNA from
damage by quenching free radicals produced during photosynthesis [12,147,148]. Anthocyanin, another
phenolic compound found in MLE, acts as an antioxidant under stress conditions [149–153]. Therefore,
plants supplemented with MLE receive a wide range of secondary metabolites that may directly protect
plants against abiotic stress-induced oxidative damage and thus enhance stress tolerance.

Table 4 (continued)

Plant species Stress Effect of MLE on antioxidants References

Phaseolus
vulgaris

Salinity and
heavy metal

↑ Activity of CAT by 4.64%, POD by 10.68%, GR by
6.7%
↓ Activity of SOD by 18.92%

[56]

Phaseolus
vulgaris

Salinity, heat
and gamma ray

↑ GR activity by 36% [31]

Phaseolus
vulgaris

Salinity ↑ Contents of ASC by 14.49%, GSH by 17.21% and
activities of SOD by 23.6%, APX by 20%, GR by
38.6%
↓ Activity of CAT by 11.68%

[48]

Note: SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; POD, peroxidase; GR, glutathione reductase; ASC, ascorbic acid;
GSH, glutathione.
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4.5 Influence of MLE on Phytohormones
Exogenous application of MLE can modulate phytohormone contents in plants. Supplementation with

MLE increased auxins, gibberellins, and cytokinins but decreased ABA in common bean plants under
salinity, heat and gamma ray stress conditions [31]. Similarly, fertilization of rocket plants with MLE
enhanced auxin, gibberellin and cytokinin contents and reduced ABA content under nonstress conditions
[154]. Spraying common bean with MLE increased the contents of benzoic acid, trans-cinnamic acid, SA,
trans-jasmonic acid, IAA, indole-3-propionic acid, indole-3-butyric acid, trans-zeatin, trans-zeatin
riboside, gibberellic acid (GA3), gibberellin A4 (GA4), gibberellin A7 (GA7), and decreased ABA
content [155]. MLE contains high levels of phytohormones such as zeatin, dihydrozeatin and
isopentyladenine [35–38], auxins, gibberellins and salicylates [154,155]. Hormones present in MLE may
contribute to the improvement in abiotic stress tolerance and growth observed in MLE-treated plants (Fig. 1).

5 Role of MLE in Crop Improvement under Nonstress Conditions

Along with mitigating abiotic stresses, exogenous MLE can also provide benefits under nonstress
conditions by improving plant growth, development, and agronomic characteristics (Table 5). For
instance, seed priming with MLE can promote germination indices under nonstressed conditions in a
wide range of plant species, including pea [156], wheat [135], okra [157], maize [158] and pepper [159].
Seed pretreatment with MLE solutions improved the rate of seed emergence, vigor of seedlings, and
overall growth of wheat plants [135]. Moreover, seed priming with MLE enhanced germination, plant
growth, α-amylase activity, and total soluble sugars in pea seedlings under nonstress conditions [156].
Numerous studies have reported that exogenous application of MLE improved the vegetative growth of
plants and economic yield performance of several plant species, including snap bean [160], okra [157],
Freesia hybrida [161], Cyperous rotandous [162], wheat [163,164], tomato [165,166], maize [167],
soybean [168], pepper [169], sweet pepper [170], lettuce [171], sunflower [172], and gladiolus [173].
Both vegetative growth parameters such as PH, SL, SFW, SDW, and leaf number as well as yield
components such as cob length, cob diameter, grains per cob, 100-grain weight, and grain weight per
plant were improved after foliar application of MLE to maize [167]. Moreover, Prunus salicina trees
sprayed with MLE exhibited higher fruit setting, total yield, fruit weight, firmness, color, TSS value,
titrable acidity ratio, ascorbic acid content, anthocyanin content, antioxidant activity, reduced titrable
acidity and less fruit drop compared to untreated plants [174].

Table 5: Effects of exogenous MLE on crops under nonstress conditions

Plant species Exogenous MLE application Response to exogenous MLE References

Phaseolus vulgaris
(Common bean)

1:1 (50%), 1:2 (33%), 1:4
(20%) and 1:8 (11%) MLE as
a foliar spray

↑ PH, LA, leaf number, leaf Chl
content, and yield

[160]

Triticum aestivum
(Wheat)

3% MLE as a seed priming ↑ Biochemical parameters and yield [175]

Solanum
lycopersicum var.
cerasiforme (Cherry
tomato)

3.3% (w/v) of MLE in foliar
and root applications

↑ Canopy biomass, floral shoot
number, number of flowers and
number of fruit per plant,
lateral vegetative shoot number, PH,
yield as grams of fruit per plant

[176]

Lycopersicon
esculentum (Tomato)

20%, 40%, 60%, 80%, and
100% MLE as a foliar spray

↑ Growth and yield, erect stemming,
number of fresh leaves, regular
branching and healthy fruits and
regular flowering

[165]

(Continued)
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Table 5 (continued)

Plant species Exogenous MLE application Response to exogenous MLE References

Lycopersicon
esculentum (Tomato)

20% MLE as a foliar
application

↑ SDW, RDW and PH [166]

Zea mays (Maize) 1:30 MLE as a seed treatment ↑ Seed emergence, Chl a and Chl b
contents, grain yield and harvest
index

[158]

Triticum aestivum
(Wheat)

3% solution of MLE as foliar
spray

↑ Growth and yield [177]

Triticum aestivum
(Wheat)

1:5 (w/v) of MLE as a foliar
spray

↑ 1000-grain weight along with
biological yield

[163]

Triticum aestivum
(Wheat)

1:32 (v/v) of MLE as a foliar
spray

↑ Plant biomass, grain yield and
fertilizer use efficiency

[164]

Abelmoschus
esculentus (Okra)

2.5%, 5% and 10% of MLE as
a pretreatment

↓ Possibility of fungal infection,
↑ Viability and vigor of the seed

[176]

Foeniculum vulgare
(Fennel)

1:30 and 1:40 of MLE
dilutions as a foliar spray

↑ PH, branch number per plant, FW,
fruit weight, umbel number per
plant, and fruit yield, photosynthetic
pigments, total phenols, and oil
content

[178]

Foeniculum vulgare
(Fennel)

2.5% and 5% aqueous extract,
2.5% and 5% ethanolic extract
of MLE as a foliar spray

↑ Vegetative growth, number of
umbels per plant, fruit and oil yield
per plant, total carbohydrate content
in fruits, Chl a, Chl b and
carotenoids contents, N, P and K+

contents in leaves

[179]

Cyperus rotundus 25%, 50%, 75% and 100% of
MLE as a soil application

↑ RL, SL, SFW and SDW [162]

Prunus salicina 4%, 5%, and 6% of MLE as a
foliar spray

↑ Fruit setting, yield, fruit weight,
firmness, color, TSS value, titrable
acidity ratio, ascorbic acid content,
anthocyanin content, antioxidant
activity
↓ Fruit drop

[174]

Freesia hybrida 1%, 2%, 5% and 10% of MLE
as a foliar spray

↑ PH, 50% sprouting, leaves per
plant, LA, total Chl content, stem
diameter, number of flowers per
stem, number of marketable stem,
vase life, and flower diameter

[161]

Triticum aestivum
(Wheat)

10 and 30 times dilution of
MLE as a foliar spray

↑ Germination and seedling growth
attributes

[73]

(Continued)
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Table 5 (continued)

Plant species Exogenous MLE application Response to exogenous MLE References

Abelmoschus
esculentus (Okra)

10%, 20% and 30% of MLE
as a foliar spray

↑ PH, number of branches plant−1,
number of leaves plant−1, leaf area
index, dry weight of leaves, stems,
roots, total biomass, number of pods
ha−1 and dry weight of pods

[157]

Zea mays (Maize) 1:32 (v/v) of MLE as a foliar
spray

↑ Growth parameters like PH, SL,
SFW, SDW, number of leaves
plant−1, and yield components like
cob length, cob diameter, number of
grains cob−1, 100-grain weight, grain
weight plant−1

[167]

Gladiolus
grandiflorus
(Gladiolus)

30 times diluted of MLE as a
foliar spray

↑ PH, stalk length, number of florets
spike, vase life in sucrose solution,
earlier spike emergence, corm
weight and cormel diameter

[173]

Brassica napus
(Canola)

2% of MLE a foliar sprays ↑ Seed yield, biological yield,
harvest index, number of siliques,
1000-seed weight, higher leaf area
indices, crop growth rates and net
assimilation

[172]

Pisum sativum (Pea) 3% of MLE as a priming agent ↑ Germination indices, seedling
vigor, root and shoot growth, α-
amylase activity and total soluble
sugar contents

[156]

Salvia officinalis
(Sage)

2.5, 5.0 and 10 g L−1 of MLE
as a foliar spray

↑ PH, number of leaves, number of
branches, yield and essential oil
contents

[180]

Glycine max
(Soybean)

10%, 20% and 30% of MLE
as a foliar spray

↑ Root development parameters and
root exudates

[168]

Capsicum annuum
(Pepper)

2%, 4%, and 6% of MLE as
foliar application

↑ Germination indices, seedlings
growth parameters, LA, yield
contributing characters,
carbohydrate, ASC, K+ and Ca2+

contents

[159]

Capsicum annuum
(Pepper)

1:10 and 1:20 of MLE as a
foliar application

↑ Growth and yield parameters [169]

Lactuca sativa
(Lettuce)

30 times diluted MLE as a
foliar application

↑ Vegetative growth, chemical
characteristics and yield
↓ Nitrate content

[171]

Capsicum annum
(Sweet bell pepper)

1:32 (v/v) of MLE as a foliar
spraying

↑ PH, number of leaves, fruit weight
and yield

[170]

(Continued)
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Table 5 (continued)

Plant species Exogenous MLE application Response to exogenous MLE References

Triticum aestivum
(Wheat)

1%, 2%, 3%, and 4% of MLE
at 40, 70, and 90 days foliar
spraying

↑ Straw and grain yield, biological
yield, 1000-grain weight, yield
efficiency, protein content, and
nutrient uptake

[59]

Eruca vesicaria
subsp. sativa (Rocket)

1%, 2% and 3% of MLE as a
foliar spraying

↑ Photosynthetic rates, stomatal
conductance, chlorophyll a and b,
carotenoids, sugars, proteins,
phenols, ascorbic acid, N, P, K+,
Ca2+, Mg2+, and Fe2+ contents,
auxins, gibberellins and cytokinins
and the activities of SOD, CAT,
and POD
↓ Lipid peroxidation and abscisic
acid

[154]

Helianthus annuus
(Sunflower)

5%, 10%, 15% and 20% of
MLE as a foliar spraying

↑ Agronomic parameters and
economic yields, achene protein and
oil contents

[172]

‘Kinnow’ mandarin
(Citrus nobilis ×
Citrus deliciosa)

3.0% of MLE as a foliar spray ↓ Fruit drop
↑ Fruit set, yield, fruit weight, juice
weight, TSS value, ASC, sugars, and
TPC, SOD and CAT activity

[181]

Allium sativum
(Garlic)

2% of MLE as a foliar spray ↑ N, P and K contents in leaves and
bulb, quality and total yield, average
bulb weight, weight of leaves, total
dry weight plant−1, and TSS value of
bulbs

[182]

Linum usitatissimum
(Linola)

3.3% of MLE as a foliar spray ↓ Crop branching, flowering and
maturity times, PH, number of
branches, tillers, pods and seeds per
pod

[44]

Cenchrus ciliaris,
Panicum antidotale,
and echinochloa
crusgalli

1:10, 1:20, 1:30, and 1:40 of
MLE as a foliar spray

↑ Seed germination, number of
leaves, number of tillers, and shoot
vigor

[62]

Chenopodium quinoa
(Quinoa)

3% of MLE as a foliar spray ↑ Growth and yield parameters
↑ Photosynthesis and pigments
↑ Total free amino acid, total soluble
proteins, anthocyanin, ASC and
proline
↓ MDA content

[183]

Helianthus annuus
(Sunflower)

Moringa leaf (25% and 50%
solution)

↑ plant height, plant fresh and dry
weights, root fresh and dry weight
number of achenes per plant, 1000-
achene weight, flower diameter, leaf
area, and yield

[184]

(Continued)
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Application of exogenous MLE can also boost nutrient content in a variety of plant species (as
summarized in Table 3). Foliar spray of MLE enhanced N, P, K+, Ca2+, Mg2+, and Zn2+ contents in
leaves of Kinnow’ mandarin [181]. Similarly, higher contents of N, P, K+, Ca2+, Mg2+, and Fe2+ were
observed in the rocket (Eruca vesicaria subsp. sativa) plants when sprayed with MLE [154].
Additionally, exogenous application of MLE can improve photosynthetic efficiency under nonstress
conditions [154]. For instance, exogenous MLE application on rocket plants increased the photosynthetic
rate, stomatal conductance, chl a and chl b, and carotenoid contents compared with untreated plants [154].

6 Conclusion and Future Prospects

Application of MLE has been shown to be an effective and eco-friendly approach to protect plants
against abiotic stressors. The complex blend of antioxidants, metabolites, phytohormones, and minerals
present in MLE appears to help protect plants by influencing many aspects of plant physiology,
metabolism, hormone signaling, cellular homeostasis, redox potential, and developmental processes.
Additional investigations into the precise nature of the protection offered by MLE are needed and may
provide information important for crop plant protection and crop productivity, helping ensure food
security. Future studies should aim to identify the particular MLE bioactive molecules that confer stress
tolerance in plants and the underlying mechanisms.
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