Abstract
This paper investigates the design and heat transfer optimization of a finned multi-tubular metal hydride tank for hydrogen storage. Metal hydrides are promising candidates for hydrogen storage due to their high volumetric capacity and safety, but their low thermal conductivity poses challenges in heat management during hydrogen absorption and desorption. The study explores the integration of finned tubes into the tank design to enhance heat transfer. Numerical modeling of a cylindrical tank with radial symmetry and multiple finned tubes was conducted, focusing on heat flux improvements and overall system performance. The results demonstrate that incorporating fins significantly increases the heat transfer surface area, improving thermal conductivity, absorption, and desorption kinetics. This leads to faster and more efficient hydrogen storage, reducing the time for charging and discharging processes. The findings highlight the potential of finned designs in advancing hydrogen storage technologies by addressing key thermal management challenges.