Abstract
Luminescent solar concentrators (LSCs) utilizing carbon dots (CDs) have emerged as promising solutions for transparent photovoltaic applications due to their high transparency and efficient light-to-electricity conversion. This study investigates the synthesis and optical enhancement of CDs doped with transition metal ions-cobalt, nickel, copper, and zinc-to improve LSC performance. Using a microwave synthesis method, we produced CDs with a high quantum yield of 81%, a substantial Stokes shift of 0.71 eV, and excellent stability. Doping CDs with metal ions at molar concentrations of 1%, 3%, and 5% revealed that 1 mol% copper-doped CDs exhibited superior optical properties, enhancing light absorption and emission through effective metal-ion interactions. LSCs, fabricated with dimensions of 15 x 15 x 0.6 cm3 using glass and PMMA waveguides, achieved notable photovoltaic performance with an optical efficiency of 3.99% and a photoconversion efficiency (PCE) of 1.45% for PMMA-based devices. The introduction of copper at 1% concentration resulted in a 22% increase in both optical efficiency and PCE. Stability assessments over 90 days indicated minimal performance degradation, underscoring the robustness of the synthesized materials. This research highlights the potential of metal-doped CDs to optimize LSC technology, facilitating integration into urban environments and advancing the commercialization of transparent photovoltaic systems.