Less variable than life history parameters (LHPs), it is life history ratios (LHRs) that define how taxa allocate energy between growth, maintenance and reproduction, and respond to fishing pressure. Limited by small samples, variable data quality, and a focus on LHP estimation, previous meta-analyses have failed to settle debate about the extent to which LHRs are relatively invariant across all taxa or characteristic of specific taxa. We collected de novo 1335 published studies and applying rigorous standardization and quality control procedures developed, and make available, a database of high-quality M/K and L-m/L-infinity estimates. We describe two parallel but independent meta-analyses: a cross-validation study of the predictability of M/K by taxonomic category and an evaluation of alternative relationships between the LHRs using Akaike information criteria. These analyses demonstrate that the LHRs are correlated and vary predictably by taxa, with aggregation to the level of family and genera having the most predictive power in our database. We postulate that the LHRs of taxa may relate to their stoichiometric niches, which could open up interesting lines for ecological research and provide new tools for predicting the LHRs of poorly studied taxa.
Details
Title
How to estimate life history ratios to simplify data-poor fisheries assessment
Authors/Creators
Jeremy D. Prince - Murdoch University
Chris Wilcox - CSIRO Oceans and Atmosphere
Norman Hall - Murdoch Univ, Ctr Fish Fisheries & Aquat Ecosyst Res, Sch Vet & Life Sci, Murdoch, WA, Australia
Publication Details
ICES journal of marine science, Vol.80(10), pp.2619-2629
Publisher
Published by Oxford University Press on behalf of International Council for the Exploration of the Sea.
Number of pages
12
Grant note
2014-40057 / David and Lucile Packard Foundation; The David & Lucile Packard Foundation