Journal article
Lebesgue constants for Hadamard matrices
Journal of Fourier Analysis and Applications, Vol.10(3), pp.247-258
2004
Abstract
There are many advantages in the use of Hadamard matrices in digital signal processing. However one possible disadvantage is the so-called overflow, as measured by the associated Lebesgue constants. We show that for certain classes of recursively generated Hadamard matrices, there are logarithmic upper bounds for these constants. On the other hand, for some Hadamard matrices the Lebesgue constants are of order √m. These results have natural analogues in classical Fourier analysis.
Details
- Title
- Lebesgue constants for Hadamard matrices
- Authors/Creators
- D. Hadwin (Author/Creator) - University of New HampshireK.J. Harrison (Author/Creator) - Murdoch UniversityJ.A. Ward (Author/Creator) - Curtin University
- Publication Details
- Journal of Fourier Analysis and Applications, Vol.10(3), pp.247-258
- Publisher
- Birkhause Boston
- Identifiers
- 991005540547207891
- Murdoch Affiliation
- Murdoch University
- Language
- English
- Resource Type
- Journal article
Metrics
105 Record Views
InCites Highlights
These are selected metrics from InCites Benchmarking & Analytics tool, related to this output
- Collaboration types
- Domestic collaboration
- International collaboration
- Citation topics
- 4 Electrical Engineering, Electronics & Computer Science
- 4.58 Wireless Technology
- 4.58.1345 Antenna Arrays
- Web Of Science research areas
- Mathematics, Applied
- ESI research areas
- Mathematics