Reliable transfer of control policies from simulation to real-world robotic systems remains a central challenge in robotics, particularly for car-like mobile robots. Digital Twin (DT) technology provides a robust framework for high-fidelity replication of physical platforms and bi-directional synchronization between virtual and real environments. In this study, a DT-based testbed is developed to train and evaluate an imitation learning (IL) control framework in which a neural network policy learns to replicate the behavior of a hybrid Model Predictive Control (MPC)–Backstepping expert controller. The DT framework ensures consistent benchmarking between simulated and physical execution, supporting a structured and safe process for policy validation and deployment. Experimental analysis demonstrates that the learned policy effectively reproduces expert behavior, achieving bounded trajectory-tracking errors and stable performance across simulation and real-world tests. The results confirm that DT-enabled IL provides a viable pathway for Sim2Real transfer, accelerating controller development and deployment in autonomous mobile robotics.
Details
Title
Sim2Real Transfer of Imitation Learning of Motion Control for Car-like Mobile Robots Using Digital Twin Testbed
Authors/Creators
Narges Mohaghegh - Murdoch University
Hai Wang - Murdoch University, Centre for Water, Energy and Waste
Amirmehdi Yazdani - Murdoch University, School of Engineering and Energy