Journal article
Src family kinases: Regulation of their activities, levels and identification of new pathways
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol.1784(1), pp.56-65
2008
Abstract
While the Src family of protein tyrosine kinases (SFK), and the main ancillary molecules involved in their regulation, have been studied for many years, the details of their interplay are not fully understood and thus remain under active investigation. Additionally, new players that coordinate their regulation and direct their signalling cascades are also being uncovered, shedding new light on the complexity of these signalling networks. Through the utilization of novel interaction assays, several new interconnecting mediators that are helping to show the elegance of Src family kinase regulation have been discovered. This review outlines SFK regulation, the discovery of the Csk binding protein (Phosphoprotein Associated with Glycosphingolipid-enriched microdomains, Cbp/PAG), and its role in regulating SFK kinase activity status, as well as protein levels. Further, details of the methods used to identify this dual mode of regulation can be applied to delineate the full gamut of SH2/SH3-directed SFK pathways and, indeed, those of any tyrosine kinase. Using Lyn as a model SFK, we and others have shown that Cbp recruits negative regulators of COOH-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk) after Lyn is activated and bound to Cbp. Lyn phosphorylates Cbp on multiple tyrosine residues, including two that can bind Lyn's SH2 domain with high affinity. Lyn also phosphorylates Y314, which recruits Csk/Ctk to phosphorylate Lyn at its Y508 negative site, allowing an inactive conformation to form. However, the pY508 site has a low affinity for Lyn's SH2 domain, while the Cbp sites have high affinity. Thus, until these Cbp sites are dephosphorylated, Lyn can remain active. Intriguingly, phosphorylated Y314 also binds the suppressor of cytokine signalling 1 (SOCS1), resulting in elevated ubiquitination and degradation of Lyn. Thus, a single phosphotyrosine residue within Cbp co-ordinates a two-phase process involving distinct negative regulatory pathways that allow inactivation, followed by degradation, of SFKs.
Details
- Title
- Src family kinases: Regulation of their activities, levels and identification of new pathways
- Authors/Creators
- E. Ingley (Author/Creator) - The University of Western Australia
- Publication Details
- Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol.1784(1), pp.56-65
- Publisher
- Elsevier B.V.
- Identifiers
- 991005541616707891
- Copyright
- © 2007 Elsevier B.V.
- Murdoch Affiliation
- Murdoch University
- Language
- English
- Resource Type
- Journal article
UN Sustainable Development Goals (SDGs)
This output has contributed to the advancement of the following goals:
Source: InCites
Metrics
18 Record Views
InCites Highlights
These are selected metrics from InCites Benchmarking & Analytics tool, related to this output
- Citation topics
- 1 Clinical & Life Sciences
- 1.96 Cell Biology
- 1.96.224 Cell Mechanics
- Web Of Science research areas
- Biochemistry & Molecular Biology
- Biophysics
- ESI research areas
- Biology & Biochemistry