#### Please do not remove this page

5555067507891

# **NU Murdoch University**

### **TF1.3 Permanent marshes**

Kingsford, Richard; Catford, Jane; Rains, MC; et.al. https://researchportal.murdoch.edu.au/esploro/outputs/bookChapter/TF13-Permanent-marshes/991005555067507891/filesAndLinks?index=0

Kingsford, R., Catford, J., Rains, M., Robson, B. J., & Keith, D. (2020). TF1.3 Permanent marshes. In D. Keith (Ed.), The IUCN global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups (pp. 97-). IUCN. https://researchportal.murdoch.edu.au/esploro/outputs/bookChapter/TF13-Permanent-marshes/99100

 $\hfill \ensuremath{\mathbb{C}}$  2020 IUCN, International Union for Conservation of Nature and Natural Resources Downloaded On 2024/05/04 16:58:27 +0800



# IUCN Global Ecosystem Typology 2.0

Descriptive profiles for biomes and ecosystem functional groups

David A. Keith, Jose R. Ferrer-Paris, Emily Nicholson and Richard T. Kingsford (editors)



INTERNATIONAL UNION FOR CONSERVATION OF NATURE









PLUS ALLIANCE

### **About IUCN**

IUCN is a membership Union uniquely composed of both government and civil society organisations. It provides public, private and non-governmental organisations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together.

Created in 1948, IUCN is now the world's largest and most diverse environmental network, harnessing the knowledge, resources and reach of more than 1,400 Member organisations and some 15,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards.

IUCN provides a neutral space in which diverse stakeholders including governments, NGOs, scientists, businesses, local communities, indigenous peoples organisations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development.

www.iucn.org https://twitter.com/IUCN/

### About the Commission on Ecosystem Management (CEM)

The Commission on Ecosystem Management (CEM) promotes ecosystem-based approaches for the management of landscapes and seascapes, provides guidance and support for ecosystem-based management and promotes resilient socio-ecological systems to address global challenges.

www.iucn.org/commissions/commission-ecosystem-management

# IUCN Global Ecosystem Typology 2.0

Descriptive profiles for biomes and ecosystem functional groups

David A. Keith, Jose R. Ferrer-Paris, Emily Nicholson and Richard T. Kingsford (editors)

The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations.

IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); and the United States Department of State.

This publication has been made possible in part by funding from: IUCN Commission on Ecosystem Management Red List of Ecosystems Thematic Group; The Centre for Ecosystem Science, University of NSW, Sydney; The PLuS Alliance; Australian Research Council (LP170101143).

| Published by:      | IUCN, Gland, Switzerland                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copyright:         | © 2020 IUCN, International Union for Conservation of Nature and Natural Resources                                                                                                                                                                                                                                                                               |
|                    | Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged.                                                                                                                                                           |
|                    | Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder.                                                                                                                                                                                                                |
| Citation:          | Keith, D.A., Ferrer-Paris, J.R., Nicholson, E. and Kingsford, R.T. (eds.) (2020). <i>The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups</i> . Gland, Switzerland: IUCN.                                                                                                                                    |
|                    | Individual chapters/sections within this report should be cited as: Author(s) (2020). 'Title of chapter/<br>section'. In: D.A. Keith, J.R. Ferrer-Paris, E. Nicholson and R.T. Kingsford (eds.) (2020). <i>The IUCN</i><br><i>Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups</i> .<br>Gland, Switzerland: IUCN. |
| ISBN:              | 978-2-8317-2077-7                                                                                                                                                                                                                                                                                                                                               |
| DOI:               | https://doi.org/10.2305/IUCN.CH.2020.13.en                                                                                                                                                                                                                                                                                                                      |
| Cover photos:      | Left: The Earth (NASA). Right (top to bottom): Clouds (Adrian Korpal on Unsplash); Freshwater falls, Iguazu (David Keith); Thorny Desert, Catavina (David Keith); Coral reefs, Red Sea (Francesco Ungaro); and Cave system, Yucatán (Alison Perkins). Back cover: Dove Lake in Cradle Mountain National Park, Tasmania (Dixanstudio).                           |
| Layout and design: | Diwata Hunziker                                                                                                                                                                                                                                                                                                                                                 |
| Available from:    | IUCN, International Union for Conservation of Nature<br>IUCN Red List of Ecosystems Thematic Group<br>Rue Mauverney 28<br>1196 Gland, Switzerland<br>rle-contact@iucn.org<br>www.iucn.org/resources/publications                                                                                                                                                |

## Content

| List o | of fig | ures                                                          | viii |
|--------|--------|---------------------------------------------------------------|------|
| List o | of tak | bles                                                          | viii |
| Exec   | cutive | e summary                                                     | ix   |
| Auth   | ors a  | and affiliations                                              | х    |
| Ackr   | nowle  | edgements                                                     | XV   |
| Glos   | sary   | of selected terms and acronyms used in ecosystem descriptions | xvi  |
| Intro  | duc    | tion                                                          | 1    |
|        |        |                                                               |      |
| Part   | t I    |                                                               | 2    |
| 1      | Dev    | elopment of the typology                                      | 2    |
| 2      | Des    | ign principles                                                | 3    |
| 3      | Lev    | els of classification within the Global Ecosystem Typology    | 5    |
|        | 3.1    | Realms                                                        | 5    |
|        | 3.2    | Biomes                                                        | 9    |
|        | 3.3    | Ecosystem Functional Groups                                   | 10   |
|        | 3.4    | Lower levels of classification                                | 11   |
| 4      | Ref    | ections on the approach to typology development               | 18   |
|        | 4.1    | Theoretical foundations                                       | 18   |
|        | 4.2    | Top-down and bottom-up construction                           | 18   |
|        | 4.3    | Discrete representation of continuous patterns in nature      | 18   |
|        | 4.4    | Classification and mapping                                    | 19   |
| 5      | Des    | criptive profiles for Ecosystem Functional Groups             | 19   |
|        | 5.1    | Nomenclature                                                  | 19   |
|        | 5.2    | Text descriptions                                             | 19   |
|        | 5.3    | Exemplary photographs                                         | 19   |
|        | 5.4    | Major ecosystem drivers                                       | 19   |
|        | 5.5    | Diagrammatic assembly models                                  | 20   |
|        | 5.6    | Indicative distribution maps                                  | 20   |
|        | 5.7    | Use of references                                             | 21   |
|        | 5.8    | Updates                                                       | 21   |
| Refe   | erenc  | ces                                                           | 28   |
| App    | endi   | x 1. List of Ecosystem Functional Groups by realms and biomes | 33   |

| Par        | tll                                                          | 37 |
|------------|--------------------------------------------------------------|----|
| T1         | Tropical-subtropical forests biome                           | 38 |
|            | T1.1 Tropical subtropical lowland rainforests                | 39 |
|            | T1.2 Tropical subtropical dry forests and thickets           | 40 |
|            | T1.3 Tropical-subtropical montane rainforests                | 41 |
|            | T1.4 Tropical heath forests                                  | 42 |
| T2         | Temperate-boreal forests and woodlands biome                 | 43 |
|            | T2.1 Boreal and temperate high montane forests and woodlands | 44 |
|            | T2.2 Deciduous temperate forests                             | 45 |
|            | T2.3 Oceanic cool temperate rainforests                      | 46 |
|            | T2.4 Warm temperate laurophyll forests                       | 47 |
|            | T2.5 Temperate pyric humid forests                           | 48 |
|            | T2.6 Temperate pyric sclerophyll forests and woodlands       | 49 |
| Т3         | Shrublands and shrubby woodlands biome                       | 50 |
|            | T3.1 Seasonally dry tropical shrublands                      | 51 |
|            | T3.2 Seasonally dry temperate heaths and shrublands          | 52 |
|            | T3.3 Cool temperate heathlands                               | 53 |
|            | T3.4 Rocky pavements, lava flows and screes                  | 54 |
| <b>T</b> 4 | Savannas and grasslands biome                                | 55 |
|            | T4.1 Trophic savannas                                        | 56 |
|            | T4.2 Pyric tussock savannas                                  | 57 |
|            | T4.3 Hummock savannas                                        | 58 |
|            | T4.4 Temperate woodlands                                     | 59 |
|            | T4.5 Temperate subhumid grasslands                           | 60 |
| T5         | Deserts and semi-deserts biome                               | 61 |
|            | T5.1 Semi-desert steppes                                     | 62 |
|            | T5.2 Succulent or Thorny deserts and semi-deserts            | 63 |
|            | T5.3 Sclerophyll hot deserts and semi-deserts                | 64 |
|            | T5.4 Cool deserts and semi-deserts                           | 65 |
|            | T5.5 Hyper-arid deserts                                      | 66 |
| Т6         | Polar-alpine (cryogenic) biome                               | 67 |
|            | T6.1 Ice sheets, glaciers and perennial snowfields           | 68 |
|            | T6.2 Polar alpine rocky outcrops                             | 69 |
|            | T6.3 Polar tundra and deserts                                | 70 |
|            | T6.4 Temperate alpine grasslands and shrublands              | 71 |
|            | T6.5 Tropical alpine grasslands and herbfields               | 72 |
| Т7         | Intensive land-use biome                                     | 73 |
|            | T7.1 Annual croplands                                        | 74 |
|            | T7.2 Sown pastures and fields                                | 75 |

|     | T7.3 Plantations                                  | 76  |
|-----|---------------------------------------------------|-----|
|     | T7.4 Urban and industrial ecosystems              | 77  |
|     | T7.5 Derived semi-natural pastures and old fields | 78  |
| S1  | Subterranean lithic biome                         | 79  |
|     | S1.1 Aerobic caves                                | 80  |
|     | S1.2 Endolithic systems                           | 81  |
| S2  | Anthropogenic subterranean voids biome            | 82  |
|     | S2.1 Anthropogenic subterranean voids             | 83  |
| SF1 | Subterranean freshwaters biome                    | 84  |
|     | SF1.1 Underground streams and pools               | 85  |
|     | SF1.2 Groundwater ecosystems                      | 86  |
| SF2 | Anthropogenic subterranean freshwaters biome      | 87  |
|     | SF2.1 Water pipes and subterranean canals         | 88  |
|     | SF2.2 Flooded mines and other voids               | 89  |
| SM  | 1 Subterranean tidal biome                        | 90  |
|     | SM1.1 Anchialine caves                            | 91  |
|     | SM1.2 Anchialine pools                            | 92  |
|     | SM1.3 Sea caves                                   | 93  |
| TF1 | Palustrine wetlands biome                         | 94  |
|     | TF1.1 Tropical flooded forests and peat forests   | 95  |
|     | TF1.2 Subtropical-temperate forested wetlands     | 96  |
|     | TF1.3 Permanent marshes                           | 97  |
|     | TF1.4 Seasonal floodplain marshes                 | 98  |
|     | TF1.5 Episodic arid floodplains                   | 99  |
|     | TF1.6 Boreal, temperate and montane peat bogs     | 100 |
|     | TF1.7 Boreal and temperate fens                   | 101 |
| F1  | Rivers and streams biome                          | 102 |
|     | F1.1 Permanent upland streams                     | 103 |
|     | F1.2 Permanent lowland rivers                     | 104 |
|     | F1.3 Freeze-thaw rivers and streams               | 105 |
|     | F1.4 Seasonal upland streams                      | 106 |
|     | F1.5 Seasonal lowland rivers                      | 107 |
|     | F1.6 Episodic arid rivers                         | 108 |
|     | F1.7 Large lowland rivers                         | 109 |
| F2  | Lakes biome                                       | 110 |
|     | F2.1 Large permanent freshwater lakes             | 111 |
|     | F2.2 Small permanent freshwater lakes             | 112 |
|     | F2.3 Seasonal freshwater lakes                    | 113 |
|     | F2.4 Freeze-thaw freshwater lakes                 | 114 |

|     | F2.5 Ephemeral freshwater lakes                        | 115 |
|-----|--------------------------------------------------------|-----|
|     | F2.6 Permanent salt and soda lakes                     | 116 |
|     | F2.7 Ephemeral salt lakes                              | 117 |
|     | F2.8 Artesian springs and oases                        | 118 |
|     | F2.9 Geothermal pools and wetlands                     | 119 |
|     | F2.10 Subglacial lakes                                 | 120 |
| F3  | Artificial wetlands biome                              | 121 |
|     | F3.1 Large reservoirs                                  | 122 |
|     | F3.2 Constructed lacustrine wetlands                   | 123 |
|     | F3.3 Rice paddies                                      | 124 |
|     | F3.4 Freshwater aquafarms                              | 125 |
|     | F3.5 Canals, ditches and drains                        | 126 |
| FM1 | Semi-confined transitional waters biome                | 127 |
|     | FM1.1 Deepwater coastal inlets                         | 128 |
|     | FM1.2 Permanently open riverine estuaries and bays     | 129 |
|     | FM1.3 Intermittently closed and open lakes and lagoons | 130 |
| M1  | Marine shelf biome                                     | 131 |
|     | M1.1 Seagrass meadows                                  | 132 |
|     | M1.2 Kelp forests                                      | 133 |
|     | M1.3 Photic coral reefs                                | 134 |
|     | M1.4 Shellfish beds and reefs                          | 135 |
|     | M1.5 Photo-limited marine animal forests               | 136 |
|     | M1.6 Subtidal rocky reefs                              | 137 |
|     | M1.7 Subtidal sand beds                                | 138 |
|     | M1.8 Subtidal mud plains                               | 139 |
|     | M1.9 Upwelling zones                                   | 140 |
| M2  | Pelagic ocean waters biome                             | 141 |
|     | M2.1 Epipelagic ocean waters                           | 142 |
|     | M2.2 Mesopelagic ocean waters                          | 143 |
|     | M2.3 Bathypelagic ocean waters                         | 144 |
|     | M2.4 Abyssopelagic ocean waters                        | 145 |
|     | M2.5 Sea ice                                           | 146 |
| М3  | Deep sea floors biome                                  | 147 |
|     | M3.1 Continental and island slopes                     | 148 |
|     | M3.2 Submarine canyons                                 | 149 |
|     | M3.3 Abyssal plains                                    | 150 |
|     | M3.4 Seamounts, ridges and plateaus                    | 151 |
|     | M3.5 Deepwater biogenic beds                           | 152 |

|     | M3.6 Hadal trenches and troughs            | 153 |
|-----|--------------------------------------------|-----|
|     | M3.7 Chemosynthetic-based ecosystems (CBE) | 154 |
| M4  | Anthropogenic marine biome                 | 155 |
|     | M4.1 Submerged artificial structures       | 156 |
|     | M4.2 Marine aquafarms                      | 157 |
| MT1 | I Shorelines biome                         | 158 |
|     | MT1.1 Rocky shorelines                     | 159 |
|     | MT1.2 Muddy shorelines                     | 160 |
|     | MT1.3 Sandy shorelines                     | 161 |
|     | MT1.4 Boulder and cobble shores            | 162 |
| MT2 | 2 Supralittoral coastal biome              | 163 |
|     | MT2.1 Coastal shrublands and grasslands    | 164 |
| мта | Anthropogenic shorelines biome             | 165 |
|     | MT3.1 Artificial shorelines                | 166 |
| MFT | Γ1 Brackish tidal biome                    | 167 |
|     | MFT1.1 Coastal river deltas                | 168 |
|     | MFT1.2 Intertidal forests and shrublands   | 169 |
|     | MFT1.3 Coastal saltmarshes and reedbeds    | 170 |

### List of figures

- Figure 1 Hierarchical structure of Global Ecosystem Typology
- Figure 2 Examples of major ecosystem assembly filters represented as gradients segregating functionally contrasting ecosystems
- Figure 3 Continuous variation and transitions states among realms. Broken lines represent overlaps of Subterranean (grey) and Atmospheric realms (light blue) in a fourth dimension. Transitional realms and biomes shown in italics.
- Figure 4 a) Relationships of terrestrial biomes to a major assembly filter represented by a water deficit gradient (five of seven terrestrial biomes shown). b) Relationships of four Ecosystem Functional Groups to two environmental gradients (representing major assembly filters) elaborated within the Tropical forests biome (T1). A third filter related to an edaphic gradient differentiates group T1.4 from T1.1.

### List of tables

- **Table 1**Design principles for a global ecosystem typology
- Table 2
   Definitions of hierarchical levels within the global ecosystem typology
- Table 3
   Assembly filters and ecological traits distinguishing ecosystems within the five realms of the biosphere
- Table 4
   Methods and source data for indicative maps of each Ecosystem Functional Group (EFG)

## Executive summary

Ecosystems are critically important components of Earth's biological diversity and as the natural capital that sustains human life and well-being. Yet all of the world's ecosystems show hallmarks of human influence, and many are under acute risks of collapse, with consequences for habitats of species, genetic diversity, ecosystem services, sustainable development and human well-being. A systematic typology that encompasses all of Earth's ecosystems, representing the diversity of both ecosystem function and biodiversity, is essential for marshalling knowledge to inform effective action to sustain this critical natural capital. Accordingly, at the World Conservation Congress Marseille 2020, the IUCN membership voted strongly in favour of Motion 074, now Resolution 061, for adoption of the Global Ecosystem Typology to support global, regional and national efforts to assess and manage risks to ecosystems (WCC Resolution 061).

The IUCN Global Ecosystem Typology is a hierarchical classification system that, in its upper levels, defines ecosystems by their convergent ecological functions and, in its lower levels, distinguishes ecosystems with contrasting assemblages of species engaged in those functions. This report describes the three upper levels of the hierarchy, which provide a framework for understanding and comparing the key ecological traits of functionally different ecosystems and their drivers. An understanding of these traits and drivers is essential to support ecosystem management. By sharing research and management experiences about ecosystem functions, dependencies and responses to management, the typology can facilitate knowledge transfer that improves management outcomes for both biodiversity and ecosystem services.

The top level of the Global Ecosystem Typology divides the biosphere into **five global realms:** i) terrestrial; ii) subterranean; iii) freshwater (including saline water bodies on land); iv) marine; and v) the atmosphere.

The interfaces between these core realms are recognised as transitional realms, accommodating ecosystems, such as mangroves, that depend on unique conditions and fluxes between contrasting environments. At Level 2, the typology defines **25 biomes** – components of a core or transitional realm united by one or a few common major ecological drivers that regulate major ecological functions. These include familiar terrestrial biomes,

such as tropical/subtropical forests and deserts, as well functionally distinctive groupings that fall outside the traditional scope of the biome concept, including lentic and lotic freshwater biomes, pelagic and deep sea benthic marine biomes, subterranean freshwater biomes, and several anthropogenic biomes. Ecosystems in this latter group are created by human activity, which continues to drive and maintain their assembly, Level 3 of the typology includes 108 Ecosystem Functional Groups that encompass related ecosystems within a biome that share common ecological drivers and dependencies, and thus exhibit convergent biotic traits. Examples include temperate deciduous forests, annual croplands, seasonal upland streams, intertidal forests, epipelagic ocean waters, and deep sea trenches and troughs.

This report contains descriptive profiles for the 25 biomes and 108 Ecosystem Functional Groups in version 2.0 of the Global Ecosystem Typology, with a glossary and synopsis of the rationale and methods for development. The profiles describe the ecological traits and key drivers that distinguish groups of related ecosystems from one another, illustrated by exemplar images and diagrammatic models of ecosystem assembly, with indicative maps of global distribution and sources of further information. The descriptions, images and maps are also available on an interactive website https://global-ecosystems.org/.

Version 2.0 of the Global Ecosystem Typology is the outcome of critical review and input by an extensive international network of ecosystem scientists.

# Authors and affiliations

| Professor David A. Keith,<br>Lead author and editor              | Centre for Ecosystem Science, University of NSW, Sydney, Australia; NSW<br>Department of Planning, Industry and Environment, Sydney, Australia; IUCN<br>Commission on Ecosystem Management, Gland, Switzerland |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dr Jose R. Ferrer-Paris,<br>Map development                      | Centre for Ecosystem Science, University of NSW, Sydney, Australia; IUCN Commission on Ecosystem Management, Gland, Switzerland                                                                                |
| Associate Professor Emily<br>Nicholson, Peer-review editor       | Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia;<br>IUCN Commission on Ecosystem Management, Gland, Switzerland                                                                |
| Professor Richard T. Kingsford,<br>Governance, author and editor | Centre for Ecosystem Science, University of NSW, Sydney, Australia                                                                                                                                             |
| Professor Alicia T.R. Acosta                                     | Department of Science, Roma Tre University, Rome, Italy                                                                                                                                                        |
| Dr Andrew H. Altieri                                             | Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA                                                                                                                      |
| Dr Angela Andrade                                                | Conservation International Colombia, Bogota, Colombia; IUCN Commission on Ecosystem Management, Gland, Switzerland                                                                                             |
| Professor Alexandre M.B. Anesio                                  | Department of Environmental Science, Aarhus University, Denmark                                                                                                                                                |
| Professor Angela H. Arthington                                   | Australian Rivers Institute, Griffith University, Australia                                                                                                                                                    |
| Professor Stefan Bertilsson                                      | Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden                                                                                                    |
| Professor Malcom Beveridge                                       | University of Stirling, Stirling, Scotland                                                                                                                                                                     |
| P. Bhanumati                                                     | National Statistical Office, Ministry of Statistics and Programme<br>Implementation, New Delhi, India                                                                                                          |
| Professor Thomas S. Bianchi                                      | Department of Geological Sciences, University of Florida, Gainesville, USA                                                                                                                                     |
| Associate Professor Melanie J.<br>Bishop                         | Department of Biological Sciences, Macquarie University, Sydney, Australiia                                                                                                                                    |
| Dr Lucie M. Bland                                                | Lucie Bland Book Coach and Editor, Melbourne, Australia                                                                                                                                                        |
| Dr Patrick Bogaart                                               | United Nations Statistics Division, The Hague, Netherlands                                                                                                                                                     |
| Dr David Brankovits                                              | Marine Biology Department, Texas A&M University, Galveston, USA                                                                                                                                                |
| Dr Neil A. Brummitt                                              | Department of Life Sciences, Natural History Museum, London, England                                                                                                                                           |
| Dr Paul E. Carnell                                               | Centre for Integrative Ecology, Deakin University, Burwood, Australia                                                                                                                                          |
| Dr Jane A. Catford                                               | Department of Geography, King's London, England                                                                                                                                                                |
| Dr Michael A. Chadwick                                           | Department of Geography, King's College London, England                                                                                                                                                        |
| Dr Alan Channing                                                 | School of Earth & Ocean Sciences, Cardiff University, Wales                                                                                                                                                    |

| Associate Professor Jeremy T.<br>Claisse | Biological Sciences, California State Polytechnic University, Pomona, USA                                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professor Richard T. Corlett             | Xishuangbanna Botanical Garden, Chinese Academy of Sciences, Yunnan,<br>China                                                                                                                              |
| Professor Tasman P. Crowe                | School of Biology and Environmental Science, University College Dublin,<br>Ireland                                                                                                                         |
| Dr Nick A. Cutler                        | School of Geography, Politics & Sociology, Newcastle University, England                                                                                                                                   |
| Dr Katherine A. Dafforn                  | Department of Earth and Environmental Sciences, Macquarie University,<br>Sydney, Australia                                                                                                                 |
| Associate Professor Ian Donohue          | School of Natural Sciences, Department of Zoology, Trinity College Dublin,<br>Dublin, Ireland                                                                                                              |
| Professor David Eldridge                 | University of NSW, Australia                                                                                                                                                                               |
| Associate Professor Franz Essl           | Department of Botany and Biodiversity Research, Unversity of Vienna, Vienna,<br>Austria; Centre for Invasion Biology, Department of Botany and Zoology,<br>Stellenbosch University, South Africa           |
| Professor Andrés Etter                   | Departamento de Ecología y Territorio, Pontificia Universidad Javeriana,<br>Bogotá, Colombia                                                                                                               |
| Dr Don Faber-Langendoen                  | Conservation Science Division, NatureServe, Arlington, USA;<br>SUNY College of Environmental Science and Forestry, Syracuse, USA                                                                           |
| Dr Ulla Fernandez-Arcaya                 | Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma,<br>Spain                                                                                                                       |
| Dr Louise B. Firth                       | School of Biological and Marine Sciences, University of Plymouth, England                                                                                                                                  |
| Professor Janet Franklin                 | Department of Botany, University of California, Riverside, USA                                                                                                                                             |
| Dr Lila García                           | Provita, Caracas, Venezuela                                                                                                                                                                                |
| Dr Vasilis Gerovasileiou                 | Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology,<br>Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece                                                                |
| Professor David Gibson                   | School of Biological Sciences, Southern Illinois University, Carbondale, USA                                                                                                                               |
| Professor Paul S. Giller                 | School of Biological, Earth and Environmental Sciences, University College Cork, Ireland                                                                                                                   |
| Dr Brett C. Gonzalez                     | Smithsonian National Museum of Natural History, Washington DC, USA                                                                                                                                         |
| Dr Edward J. Gregr                       | Institute for Resources, Environment, and Sustainability, University of British<br>Columbia, Vancouver, British Columbia, Canada; SciTech Environmental<br>Consulting, Vancouver, British Columbia, Canada |
| Professor Richard Harper                 | School of Veterinary and Life Sciences, Murdoch University, Perth, Australia                                                                                                                               |
| Dr Justin C. Havird                      | Department of Biology, Colorado State University, Fort Collins, USA                                                                                                                                        |
| Dr Sylvia E. Hay                         | Centre for Ecosystem Science, University of NSW, Sydney, Australia                                                                                                                                         |

| Professor J. Tim Hollibaugh             | Department of Marine Sciences, University of Georgia, Athens, USA                                                                                                                  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professor Grant C. Hose                 | Department of Biological Sciences, Macquarie University, Australia                                                                                                                 |
| Professor Thomas M. Iliffe              | Marine Biology Department, Texas A&M University, Galveston, USA                                                                                                                    |
| Professor Kenneth Irvine                | IHE Delft Institute for Water Education, Delft, Netherlands                                                                                                                        |
| Professor Leland J. Jackson             | Department of Biological Sciences, University of Calgary, Calgary, Canada                                                                                                          |
| Associate Professor Mary<br>Kelly-Quinn | School of Biology and Environmental Science, University College Dublin,<br>Ireland                                                                                                 |
| Dr Tytti Kontula                        | Finnish Environment Institute, Helsinki, Finland                                                                                                                                   |
| Professor Christian H. Körner           | Department of Environmental Sciences, University of Basel, Basel,<br>Switzerland                                                                                                   |
| Megan Lamson                            | University of Hawaii, Hilo, USA                                                                                                                                                    |
| Dr Caroline E. R. Lehmann               | Royal Botanic Garden Edinburgh, Edinburgh Scotland; School of GeoSciences, University of Edinburgh, Edinburgh, Scotland                                                            |
| Dr Christy Linardich                    | International Union for Conservation of Nature Marine Biodiversity Unit,<br>Department of Biological Sciences, Old Dominion University, Virginia, USA                              |
| Dr Arild Lindgaard                      | Norwegian Biodiversity Information Centre, Trondheim, Norway                                                                                                                       |
| Professor Javier Loidi                  | Department of Plant Biology and Ecology, University of the Basque Country,<br>Spain                                                                                                |
| Professor Ralph Mac Nally               | School of BioSciences, The University of Melbourne, Melbourne, Australia                                                                                                           |
| Dr Alejandro Martínez                   | Molecular Ecology Group, Water Research Institute, National Research<br>Council of Italy, Verbania, Italy                                                                          |
| Dr Matt McGlone                         | Manaaki Whenua – Landcare Research, Lincoln, New Zealand                                                                                                                           |
| Dr Sarah E. McSweeney                   | Department of Geography, The University of Melbourne, Melbourne, Australia                                                                                                         |
| Dr Justin Moat                          | Royal Botanic Gardens Kew, England                                                                                                                                                 |
| Dr Nicholas J. Murray                   | College of Science & Engineering, James Cook University, Townsville,<br>Australia                                                                                                  |
| Dr Jeanne L. Nel                        | Sustainability Research Unit, Nelson Mandela University, Port Elizabeth,<br>South Africa; Wageningen Environmental Research, Wageningen University,<br>Wageningen, The Netherlands |
| Professor Robert J. Orth                | Biological Sciences Department, Virginia Institute of Marine Science, Gloucester Point, USA                                                                                        |
| Professor R. Toby Pennington            | Geography, University of Exeter, Exeter, England; Royal Botanic Garden<br>Edinburgh, Edinburgh, Scotland                                                                           |
| Dr Nathalie Pettorelli                  | Zoological Society of London, London, England                                                                                                                                      |

| Associate Professor Patricio<br>Pliscoff | Department of Ecology and Institute of Geography, Pontifica Universidad<br>Católitica de Chile, Santiago, Chile                                           |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Associate Professor Beth<br>A. Polidoro  | School of Mathematical and Natural Sciences, Arizona State University, Glendale, USA                                                                      |
| Professor Imants G. Priede               | Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland                                                                      |
| Professor Mark C. Rains                  | School of Geosciences, University of South Florida, USA                                                                                                   |
| Dr Eva Ramirez-Llodra                    | Norwegian Institute for Water Research, Gaustadalléen, Oslo, Norway; REV<br>Ocean, Lysaker, Norway                                                        |
| Dr Catherine A. Reidy Liermann           | Huxley College of the Environment, Western Washington University, USA                                                                                     |
| Associate Professor Belinda J.<br>Robson | Environmental & Conservation Sciences, Murdoch University, Perth, Australia                                                                               |
| Associate Professor Sergio Rossi         | Department of Biological and Environmental Sciences and Technologies,<br>Università del Salento, Lecce, Italy                                             |
| Dr Dirk J. Roux                          | Scientific Services, South African National Parks, George, South Africa;<br>Sustainability Research Unit, Nelson Mandela University, George, South Africa |
| Dr Jessica A. Rowland                    | Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia                                                                           |
| Professor Jeremy Russell-Smith           | Bushfire and Natural Hazards CRC, Charles Darwin University, Darwin<br>Australia                                                                          |
| Dr Ryan R. Rykaczewski                   | Ecosystem Sciences Division, NOAA Pacific Islands Fisheries Science Center,<br>Honolulu, USA                                                              |
| Dr Troy S. Sakihara                      | Department of Land and Natural Resources, Hawaii, USA                                                                                                     |
| Dr Scott R. Santos                       | Department of Biological Sciences, Auburn University, Auburn, Alabama, USA                                                                                |
| Dena M. Sedar                            | Hawaii State Parks, Honolulu, USA                                                                                                                         |
| Barbara Seidel                           | The Nature Conservancy, Honolulu, USA                                                                                                                     |
| Dr Lynne Shannon                         | Department of Biological Sciences, University of Cape Town, South Africa                                                                                  |
| Monica Sharma                            | Consultant to the United Nations, New Delhi, India                                                                                                        |
| Professor Charles R.C. Sheppard          | Department of Life Sciences, University of Warwick, Coventry, England                                                                                     |
| Professor Martin J. Siegert              | Grantham Institute – Climate Change and the Environment, Imperial College<br>London, UK                                                                   |
| Dr Jonathan S. Stark                     | Australian Antarctic Division, Hobart, Australia                                                                                                          |
| Professor Iain M. Suthers                | Centre for Marine Science & Innovation, University of New South Wales, Sydney, Australia                                                                  |
| Professor Tracey T. Sutton               | Department of Marine and Environmental Sciences, Nova Southeastern University, Florida, USA                                                               |

| Professor Stephen E. Swearer     | School of BioSciences, The University of Melbourne, Australia                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dr Teemu Tahvaneinan             | Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland                                                 |
| Dr Aleks Terauds                 | Australian Antarctic Division, Hobart, Australia                                                                                                     |
| Mark G. Tozer                    | NSW Department of Planning, Industry and Environment, Sydney, Australia                                                                              |
| Associate Professor Oscar Venter | Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, Canada                                             |
| Dr Kate E. Watermeyer            | Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia                                                                      |
| Professor James E. M. Watson     | Wildlife Conservation Society, Bronx, New York, USA; Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Australia |
| Dr Richard Williams              | CSIRO, Melbourne, Australia                                                                                                                          |
| Dr Susan K. Wiser                | Manaaki Whenua – Landcare Research, Lincoln, New Zealand                                                                                             |
| Dr Ryan Woodland                 | Center for Environmental Science, University of Maryland, Solomons, USA                                                                              |
| Professor Kenneth R. Young       | Department of Geography and the Environment, University of Texas, Austin, USA                                                                        |
| Dr Irene Zager                   | Provita, Caracas, Venezuela; IUCN Commission on Ecosystem Management,<br>Gland, Switzerland                                                          |

# Acknowledgements

We are grateful to IUCN peer reviewers, Sean Porter and Neil Burgess, for their critical appraisal of the manuscript and the concepts within, which improved the content. Dr Lucie M. Bland scrupulously copy-edited the manuscript.

We also thank the organisations listed below that contributed logistic support, funding and time to see this project to successful completion.

#### **IUCN** peer reviewers

Dr Sean N. Porter (South African Association for Marine Biological Research, Durban, South Africa) Professor Neil D. Burgess (UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), England; Copenhagen University, Copenhagen, Denmark)

**Copy editor** Dr Lucie M. Bland

**Final proofreader** Diwata Hunziker

#### Development of the Global Ecosystem Typology was supported by:

IUCN Commission on Ecosystem Management Red List of Ecosystems Thematic Group IUCN Commission on Ecosystem Management The Centre for Ecosystem Science, University of New South Wales, Sydney, Australia Provita, Caracas, Venezuela The PLuS Alliance Australian Research Council (Grant No. LP170101143)

# Glossary of selected terms and acronyms used in ecosystem descriptions

| Allochthonous energy   | Energy imported into an ecosystem from external sources in the form of organic material.                                                                                                                                                                                                                                                           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient environment    | Non-resource environmental factors that modify the availability of resources or the ability of organisms to acquire them.                                                                                                                                                                                                                          |
| Aphotic                | A zone where light intensity is too low to support photosynthesis.                                                                                                                                                                                                                                                                                 |
| Autochthonous energy   | Energy captured from abiotic sources in situ by autotrophs living within an ecosystem.                                                                                                                                                                                                                                                             |
| Autotroph              | An organism that fixes carbon from its surroundings, manufacturing complex energy-<br>storing organic compounds, generally using energy from light (photosynthesis) or<br>inorganic chemical reactions (chemosynthesis). Autotrophs are primary producers in<br>trophic webs.                                                                      |
| Basin fill             | Unconsolidated to moderately consolidated subterranean sediments that bear aquifers. They are composed of gravel, sand, silt and clay deposited on antecedent alluvial fans, pediments, flood plains and playas.                                                                                                                                   |
| Biofilm                | Periphyton. A complex layer composed of algae, cyanobacteria and heterotrophic microbes embedded in a mucopolysaccharide matrix cohering to submerged aquatic surfaces. Important food source for aquatic animals.                                                                                                                                 |
| Biogenic               | A structure created by living organisms (e.g. a coral reef, tunnels in soils or sediment).                                                                                                                                                                                                                                                         |
| C <sub>3</sub>         | The most common photosynthetic pathway in plants based only on the Calvin cycle with associated energy loss to photorespiration and dependence on daytime $CO_2$ uptake. This pathway is dominant in environments with abundant moisture and cool temperatures.                                                                                    |
| Cauliflory             | An arrangement of flowers and fruits in which they are borne directly on the main stems of a tree.                                                                                                                                                                                                                                                 |
| C <sub>4</sub>         | A photosynthetic pathway with a supplementary C-fixation pathway that minimises photorespiration, reduces CO <sub>2</sub> demand and increases water use efficiency, often dominating in warm and dry environments.                                                                                                                                |
| CAM                    | A specialised C <sub>4</sub> photosynthetic pathway in which CO <sub>2</sub> uptake and fixation occur<br>during the night, followed by internal release in daytime when light-dependent<br>photosynthesis can take place. Stomatal closure occurs during the day, reducing<br>moisture loss and enabling survival in very hot and dry conditions. |
| Chemoautotroph         | An organism that fixes carbon from its surroundings using energy from inorganic chemical reactions.                                                                                                                                                                                                                                                |
| C:N ratio              | Carbon-to-nitrogen ratio in biological tissues. Reflects differences in tissue composition related to nitrogen availability and capture as well as woodiness in plants (Pérez-Harguindeguy et al., 2013).                                                                                                                                          |
| C:N:P (Redfield) ratio | The consistent ratio of Carbon-to-Nitrogen-to-Phosphorus in marine phytoplankton of deep seas, related to a homeostatic protein-to-ribosomal RNA ratio present in both prokaryotes and eukaryotes-                                                                                                                                                 |
| Dimicitic lakes        | Lakes with waters that mix from top to bottom twice per year, before and after surface freezing in winter.                                                                                                                                                                                                                                         |
| Disturbances           | Sequences or 'regimes' of environmental events that destroy living biomass, liberate<br>and redistribute resources and trigger life history processes in some organisms (e.g.<br>fires, floods, storms, mass movement).                                                                                                                            |

| Dystrophic            | Waters with low levels of dissolved nutrients, high acidity, brown colouration and low light penetration due to tannins, organic acids and undecayed plant matter, usually originating from peaty substrates.                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emergent              | A large tree, emerging above the height of a main forest canopy.                                                                                                                                                                                                                                                                                                                    |
| Engineer              | Ecological or ecosystem engineers are organisms that directly or indirectly alter the biotic or abiotic structure of ecosystems and resource availability, making it suitable for habitation by other organisms (Jones et al., 1994).                                                                                                                                               |
| Epicormic resprouting | New shoots on trees emerging from meristematic tissues beneath the bark on large stems and trunks, usually after death of canopy foliage.                                                                                                                                                                                                                                           |
| Ericoid leaves        | Small, sclerophyllous leaves with thick cuticles and typically crowded on the branchlets; resembling those of heather.                                                                                                                                                                                                                                                              |
| Euphotic              | A zone with abundant light that can support photosynthesis.                                                                                                                                                                                                                                                                                                                         |
| Heterotroph           | An organism that cannot manufacture its own food by carbon fixation and therefore<br>derives its intake of nutrition from other sources of organic carbon, mainly plant or<br>animal matter. In the food chain, heterotrophs are secondary and tertiary consumers.<br>Heterotrophs are consumers in trophic webs, including decomposers, detritivores,<br>herbivores and predators. |
| LAI                   | Leaf Area Index, the projected area of leaves as a proportion of the area of land compared to which it is measured. Useful in remote sensing for describing vegetation density (Pérez-Harguindeguy et al., 2013).                                                                                                                                                                   |
| Leaf sizes            | Terms describing leaf size follow Raunkiaer (1934) except 'Notophyll'.Size classLeaf areaMegaphyll>164,025 mm²Macrophyll18,225–164,025 mm²Mesophyll2,025–18,225 mm²[Notophyll2,025–4,500 mm²]Microphyll225–2,025 mm²Nanophyll25–225 mm²Leptophyll<25 mm²                                                                                                                            |
| Mass movement         | Bulk movements of soil and/or rock debris down slope or vertically downwards in response to gravity.                                                                                                                                                                                                                                                                                |
| Mesophotic            | A zone of moderate light intensity that can support photosynthesis.                                                                                                                                                                                                                                                                                                                 |
| Meromictic lakes      | Lakes with waters that rarely mix from top to bottom, and thus remaining semi-<br>permanently stratified into stable layers with contrasting temperature and hydrochemistry and biota.                                                                                                                                                                                              |
| Monomictic lakes      | Lakes with waters that mix from top to bottom once per year, regardless of whether<br>the surface freezes in winter, although the seasonal timing of mixing depends on<br>whether surface freezing occurs.                                                                                                                                                                          |
| Peat                  | A deposit of partially decayed organic matter in the upper soil horizons.                                                                                                                                                                                                                                                                                                           |
| Periphyton            | Biofilm. A complex layer composed of algae, cyanobacteria and heterotrophic microbes embedded in a mucopolysaccharide matrix cohering to submerged aquatic surfaces. Important food source for aquatic animals.                                                                                                                                                                     |
| Photoautotroph        | An organism that fixes carbon from its surroundings using energy from light.                                                                                                                                                                                                                                                                                                        |
| Phreatic              | Related to groundwater or aquifers.                                                                                                                                                                                                                                                                                                                                                 |
| Polymicitic lakes     | Lakes with waters that mix continuously from top to bottom, and thus are never vertically stratified, usually due to their shallow depth.                                                                                                                                                                                                                                           |

| Primary productivity*  | The amount of chemical energy (expressed as carbon biomass) that autotrophs create in a given length of time.                                                                                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resources              | Five fundamental resources in the environment that are essential to sustaining all life: water, nutrients, oxygen, carbon and energy.                                                                                                                                                                |
| Ruderal                | Plants with a combination of life-history traits that enable colonisation of open post-<br>disturbance environments. Traits and related trade-offs include rapid growth, high<br>fecundity, wide propagule dispersal, short life-span, high demands for nutrients and<br>intolerance of competition. |
| Sclerophyll            | Plants or vegetation bearing leaves hardened by an abundance of woody tissue (sclerenchyma) and thick cuticles. Typically associated with environments that experience limited nutrients or water or cold stress.                                                                                    |
| Secondary productivity | Biomass of heterotrophic (consumer) organisms generated in a given length of time, driven by the transfer of organic material between trophic levels.                                                                                                                                                |
| Serotinous             | Refers to seedbanks that are held in woody fruits retained on the parent plant for later release, which may occur spontaneously or en masse in response to fire or adult mortality.                                                                                                                  |
| Semelparous            | Plant life cycle with a single reproductive episode before death.                                                                                                                                                                                                                                    |
| SLA                    | Specific Leaf Area, the ratio of area of a fresh leaf to its dry mass. Positively related to plant relative growth rate (Pérez-Harguindeguy et al., 2013).                                                                                                                                           |
| Succulent              | Having tissues (usually leaves or stems of plats) engorged with water, as a mechanism for drought tolerance or salt dilution.                                                                                                                                                                        |
| Ultramafic             | Rocks and derivative soils with low silica content, also low in Potassium, but with high concentrations of Magnesium and Iron.                                                                                                                                                                       |
| Xeromorphic            | Plants and animals possessing traits that enable them to tolerate drought by storing water, enhancing uptake and reducing loss. Example traits include nocturnal activity, deep roots, etc.                                                                                                          |

\*Descriptive profiles use ordinal descriptors (high, medium, and low) of productivity (such as for Net Primary Productivity), unless otherwise stated. For terrestrial and transitional realms, these descriptors are based on estimates from an ensemble of global vegetation models (Cramer et al., 1999; Kicklighter et al., 1999; Huston & Wolverton, 2009). For marine surface systems, they are based on estimates of chlorophyll a concentration for the upper 30 m of the water column (Sarmiento et al., 2004; Huston and Wolverton, 2009):

High: >2,000 g dry mass m<sup>-2</sup>.yr<sup>1</sup> for terrestrial and transitional ecosystems; >8 mg.m<sup>-3</sup> chlorophyll a concentration for marine ecosystems. Medium: 500–2,000 g dry mass m<sup>-2</sup>.yr<sup>1</sup> for terrestrial and transitional ecosystems; 0.1–8 mg.m<sup>-3</sup> chlorophyll a concentration for marine ecosystems.

Low: <500 g dry mass m<sup>-2</sup>.yr<sup>1</sup> for terrestrial and transitional ecosystems; <0.1 mg.m<sup>-3</sup> chlorophyll a concentration for marine ecosystems.

**Table 4** Methods and source data for indicative maps of each Ecosystem Functional Group (EFG)

| EFG                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T1.1 / T1.2 / T2.1 /<br>T2.2 / T2.6 / T3.4 /<br>T4.1 / T5.1 / T5.2 /<br>T5.3 / T5.4 / T5.5 /<br>T6.5 / T7.5            | Major and minor occurrences were initially identified using consensus land-cover maps (Tuanmu & Jetz, 2014) and then cropped to selected terrestrial ecoregions (Dinerstein et al., 2017) at 30 arc second spatial resolution. Ecoregions were selected if: i) their descriptions mentioned features consistent with those identified in the profile of the EFG; and ii) if their location was consistent with the ecological drivers described in the profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| S2.1 / T1.4 / T2.3 /<br>T2.4 / T3.1 / T3.2 /<br>T4.2 / T4.3 / T4.4 /<br>T4.5 / T6.4 / TF1.2 /<br>TF1.3 / F1.6 / TF1. 7 | Terrestrial ecoregions containing major or minor occurrences of this ecosystem functional group were identified by consulting available ecoregion descriptions (Dinerstein et al., 2017), global and regional reviews, national and regional ecosystem maps, locations of relevant examples, and proofed by expert reviewers. Consequently, they are coarse-scale indicative representations of distribution, except where they occupy small ecoregions. Ecoregions were mapped at 30 arc seconds spatial resolution.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T1.3                                                                                                                   | The distribution of tropical montane rainforest was approximated from a model of environmental suitability based on climatic variables and cloud cover (Wilson & Jetz, 2016). Occurrences were aggregated to half degree spatial resolution and cells reclassified as major occurrences (>25% of cell area) and minor occurrences (< 25% of cell area).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T2.5                                                                                                                   | Remote sensing estimates of canopy height were used as a direct indicator of the distribution of this group of tall forest ecosystems (Armston et al., 2015: Tang et al., 2019). We selected all areas with tree canopies taller than 40 m, and clipped to the spatial extent of temperate climate types (Beck et al., 2018). Mapped occurrences were then aggregated to half degree spatial resolution and reclassified as major occurrences (>20% of cell area) and minor occurrences (< 20% of cell area).                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Т3.3                                                                                                                   | Major and minor occurrences were identified using consensus land-cover maps (Tuanmu & Jetz, 2014; Latifovic et al., 2016), then cropped to selected terrestrial ecoregions at 30 arc seconds spatial resolution (Dinerstein et al., 2017; CEC, 1997). Ecoregions were selected if they contained areas mentioned or mapped in published regional studies (Loidi et al., 2015; Luebert & Pliscoff, 2017), or if: i) their descriptions mentioned features consistent with those identified in the profile of the Ecosystem Functional Group; and ii) if their location was consistent with the ecological drivers described in the profile.                                                                                                                                                                                                                                                                                                   |
| T6.1                                                                                                                   | Areas of permanent snow where identified from consensus land-cover maps (Tuanmu & Jetz, 2014), glacier inventories (Raup et al., 2007; NSIDC, 2005–2018) and the Antarctic Land Cover map for 2000 (Hui et al., 2017). A composite map was created at 30 arc seconds spatial resolution in geographic projection, occurrences were then aggregated to half degree spatial resolution and reclassified as major occurrences (cells with > 22% snow coverage) and minor occurrences (cells with at least one occurrence).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T6.2                                                                                                                   | Known locations of prominent ice-free rock in glacial and alpine environments were selected from global geographical gazeteers (GeoNames, 2020), glacier inventories (Raup et al 2007; NSIDC, 2005–2018) and the Antarctic Land Cover map for 2000 (Hui et al., 2017). Further areas with mixed occurrence of barren and snow/ice cover were identified from the Circumpolar Arctic Vegetation Map (Raynolds et al., 2019), the USGS EROS LandCover GLCCDB, version 2 (Loveland et al., 2000) and a 1-km consensus land-cover map (Tuanmu & Jetz, 2014). A composite map was created at 30 arc seconds spatial resolution in geographic projection, occurrences were then aggregated to half degree cells. Cells containing at least one known location were designated as major occurrences, while those mapped as mixed barren and snow/ice cover were designated as minor occurrences if snow/ice covered at least 2.5% of the cell area. |
| T6.3                                                                                                                   | Areas corresponding to the tundra climatic zone according to the Köppen-Geiger classification system (Beck et al., 2018) were first identified. Additional areas were then selected in high latitudes corresponding with low annual solar radiation (values <1800 in Beckmann et al., 2014). A union of these maps was created at 30 arc seconds spatial resolution in geographic projection, occurrences were then aggregated to half degree spatial resolution and reclassified cells as major occurrences (>80% of cell area) and minor occurrences (30%-80% of cell area).                                                                                                                                                                                                                                                                                                                                                               |

### **TF1** Palustrine wetlands biome



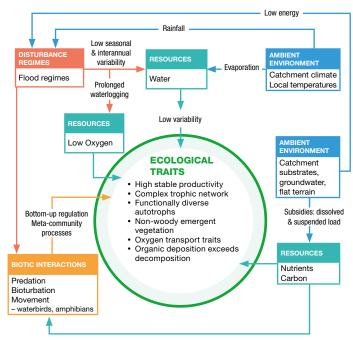
Okavango Delta, Botswana. Source: Richard Kingsford (with permission)

At the interface of terrestrial and freshwater realms, the Palustrine wetlands biome includes vegetated floodplains, groundwater seeps, and mires with permanent or intermittent surface water. Although water and light are abundant at least periodically, saturation of the soil may result in oxygen deprivation below the ground. This suppresses microbial activity and, in many systems, production exceeds decomposition, resulting in peat accumulation. The water regime influences resource availability and productivity and thus regulates these ecosystems from the bottom-up. Interactions among catchment precipitation, local evapotranspiration, and substrate and surface morphology regulate run-on, runoff, infiltration, and percolation. This results in water regimes that vary from permanent shallow standing water or near-surface water tables to seasonally high water tables to episodic inundation with long inter-annual dry phases. As a consequence of their indirect relationships with climate, wetland biomes are traditionally classified as 'azonal'. Spatial heterogeneity is a key feature

of palustrine wetlands. At landscape scales, they function as resource sinks and refuges with substantially higher productivity than the surrounding matrix. Fine-scale spatial variation in the water regime often produces restricted hydrological niches and intricate mosaics of patch types with contrasting structure and biotic composition. Autotrophs dominate complex trophic webs. Amphibious macrophytes are the dominant autotrophs, although epibenthic algae are important in some systems. Amphibious plants have specialised traits enabling growth and survival in low-oxygen substrates and often engineer habitats for heterotrophs. Microbial decomposers and invertebrate detritivores are most abundant in surface soils. A range of microscopic and macroinvertebrates with sedentary adult phases (i.e. crustaceans) have obligate associations with Palustrine wetlands, which also provide important foraging and breeding sites for macroinvertebrate and vertebrate herbivores and predators that disperse more widely across the landscape, including waterbirds.



Everlasting Swamp, Clarence River floodplain, Australia. Source: John Spencer/OEH


ECOLOGICAL TRAITS: These shallow, permanently inundated freshwater wetlands lack woody vegetation but are dominated instead by emergent macrophytes growing in extensive, often monospecific groves of rhizomatous grasses, sedges, rushes, or reeds in mosaics with patches of open water. These plants, together with phytoplankton, algal mats, epiphytes, floating, and amphibious herbs, sustain high primary productivity and strong bottom-up regulation. Although most of the energy comes from these functionally diverse autotrophs, inflow and seepage from catchments may contribute allochthonous energy and nutrients. Plant traits, including aerenchymatous stems and leaf tissues (i.e. with air spaces), enable oxygen transport to roots and rhizomes and into the substrate. Invertebrate and microbial detritivores and decomposers inhabit the water column and substrate. Air-breathing invertebrates are more common than gillbreathers, due to low dissolved oxygen. The activity of microbial decomposers is also limited by low oxygen levels and organic deposition continually exceeds decomposition. Their aquatic predators include invertebrates, turtles, snakes and sometimes small fish. The emergent vegetation supports a complex trophic web, including insects with winged adult phases, waterbirds, reptiles, and mammals, which feed in the vegetation and also use it for nesting (e.g. herons, muskrat, and alligators). Waterbirds include herbivores, detritivores, and predators. Many plants and animals disperse widely beyond the marsh through the air, water and zoochory (e.g. birds, mammals). Reproduction and recruitment coincide with resource availability and may be cued to floods. Most macrophytes spread vegetatively with long rhizomes but also produce an abundance of wind- and waterdispersed seeds.

**KEY ECOLOGICAL DRIVERS:** These systems occur in several geomorphic settings, including lake shores, groundwater seeps, river floodplains and deltas, always in low-energy depositional environments. Shallow but perennial inundation and low variability are maintained by frequent floods and lake waters, sometimes independently of local climate. This sustains

#### TF1.3 Permanent marshes

#### BIOME: TF1 PALUSTRINE WETLANDS REALM: TRANSITIONAL FRESHWATER-TERRESTRIAL

Contributors: R.T. Kingsford, J.A. Catford, M.C. Rains, B.J. Robson, D.A. Keith



high levels of water and nutrients, but also generates substrate anoxia. Substrates are typically organic. Their texture varies, but silt and clay substrates are associated with high levels of P and N. Salinity is low but may be transitional where wetlands connect with brackish lagoons (FM1.2, FM1.3). Surface fires may burn vegetation in some permanent marshes, but rarely burn the saturated substrate, and are less pervasive drivers of these ecosystems than seasonal floodplain marshes (TF1.4).

**DISTRIBUTION:** Scattered throughout the tropical and temperate regions worldwide.



#### Reference:

Grace, J.B., Wetzel, R.G. (1981). 'Habitat Partitioning and Competitive Displacement in Cattails (Typha): Experimental Field Studies'. *The American Naturalist* 118(4): 463–474.