Conference paper
Measures of similarity in Memory-Based collaborative filtering recommender system
Proceedings of the 4th Multidisciplinary International Social Networks Conference on ZZZ - MISNC '17
4th Multidisciplinary International Social Networks Conference (MISNC) '17 (Bangkok, Thailand, 17/07/2017–19/07/2017)
2017
Abstract
Collaborative filtering (CF) technique in recommender systems (RS) is a well-known and popular technique that exploits relationships between users or items to make product recommendations to an active user. The effectiveness of existing memory based algorithms depend on the similarity measure that is used to identify nearest neighbours. However, similarity measures utilize only the ratings of co-rated items while computing the similarity between a pair of users or items. In most of the e-commerce applications, the rating matrix is too sparse since even active users of an online system tend to rate only a few items of the entire set of items. Therefore, co-rated items among users are even sparser. Moreover, the ratings a user gives an individual item tells us nothing about his comprehensive interest without which the generated recommendations may not be satisfactory to a user. In order to be able to address these issues, a comprehensive study is made of the various existing measures of similarity in a collaborative filtering recommender system (CFRS) and a hierarchical categorization of products has been proposed to understand the interest of a user in a wider scope so as to provide better recommendations as well as to alleviate data sparsity.
Details
- Title
- Measures of similarity in Memory-Based collaborative filtering recommender system
- Authors/Creators
- S.C. Stephen (Author/Creator) - Murdoch UniversityH. Xie (Author/Creator) - Murdoch UniversityS. Rai (Author/Creator) - Murdoch University
- Publication Details
- Proceedings of the 4th Multidisciplinary International Social Networks Conference on ZZZ - MISNC '17
- Conference
- 4th Multidisciplinary International Social Networks Conference (MISNC) '17 (Bangkok, Thailand, 17/07/2017–19/07/2017)
- Identifiers
- 991005542229207891
- Murdoch Affiliation
- School of Engineering and Information Technology
- Language
- English
- Resource Type
- Conference paper
Metrics
288 File views/ downloads
168 Record Views