Output list
Journal article
Published 2024
Molecular ecology, e17555
Demographic processes can substantially affect a species' response to changing ecological conditions, necessitating the combined consideration of genetic responses to environmental variables and neutral genetic variation. Using a seascape genomics approach combined with population demographic modelling, we explored the interplay of demographic and environmental factors that shaped the current population structure in Indo‐Pacific bottlenose dolphins ( Tursiops aduncus ) along the Western Australian coastline. We combined large‐scale environmental data gathered via remote sensing with RADseq genomic data from 133 individuals at 19 sampling sites. Using population genetic and outlier detection analyses, we identified three distinct genetic clusters, coinciding with tropical, subtropical and temperate provincial bioregions. In contrast to previous studies, our demographic models indicated that populations occupying the paleo‐shoreline split into two demographically independent lineages before the last glacial maximum (LGM). A subsequent split after the LGM 12—15 kya gave rise to the Shark Bay population, thereby creating the three currently observed clusters. Although multi‐locus heterozygosity declined from north to south, dolphins from the southernmost cluster inhabiting temperate waters had higher heterozygosity in potentially adaptive loci compared to dolphins from subtropical and tropical waters. These findings suggest ongoing adaptation to cold‐temperate waters in the southernmost cluster, possibly linked to distinct selective pressures between the different bioregions. Our study demonstrated that in the marine realm, without apparent physical boundaries, only a combined approach can fully elucidate the intricate environmental and genetic interactions shaping the evolutionary trajectory of marine mammals.
Journal article
Evidence of male alliance formation in a small dolphin community
Published 2022
Mammalian Biology
The photo-identification of uniquely marked individuals has revealed much about mammalian behaviour and social structure in recent decades. In bottlenose dolphins (Tursiops spp.), for example, the long-term tracking of individuals has unveiled considerable variation in social structure among populations and various spatio-temporal aspects of group formation. In this study, we investigated associations among individual males in a small community of Indo-Pacific bottlenose dolphins (T. aduncus) residing in an urbanized estuary in southwestern Australia. Given the relative proximity of our study area to other populations in which complex male alliances form for the purpose of mate acquisition, we used long-term photo-identification records and social analyses to assess whether such alliances also occur in smaller and more isolated settings. Our work revealed strong social bonds and long-term, non-random associations among individual males, suggesting the occurrence of male alliances. Behavioural observations of alliances interacting with potentially receptive adult females from the estuary community and from adjacent communities, and exhibiting sexual display behaviours near females, suggest that these alliances occur in a reproductive context. As the first formal analysis indicating the occurrence of male alliances outside Shark Bay along the vast western coastline of Australia, this study complements previous research and extends our understanding of the evolutionary and ecological processes that drive alliance formation.
Journal article
Inconsistency between socio-spatial and genetic structure in a coastal dolphin population
Published 2021
Frontiers in Marine Science, 7, Art. 617540
Identifying population structure and boundaries among communities of wildlife exposed to anthropogenic threats is key to successful conservation management. Previous studies on the demography, social and spatial structure of Indo-Pacific bottlenose dolphins (Tursiops aduncus) suggested four nearly discrete behavioral communities in Perth metropolitan waters, Western Australia. We investigated the genetic structure of these four communities using highly polymorphic microsatellite markers and part of the hypervariable segment of the mitochondrial control region. Overall, there was no evidence of spatial genetic structure. We found significant, yet very small genetic differentiation between some communities, most likely due to the presence of highly related individuals within these communities. Our findings of high levels of contemporary migration and highly related individuals among communities point toward a panmictic genetic population with continuous gene flow among each of the communities. In species with slow life histories and fission-fusion dynamics, such as Tursiops spp., genetic and socio-spatial structures may reflect different timescales. Thus, despite genetic similarity, each social community should be considered as a distinct ecological unit to be conserved because they are exposed to different anthropogenic threats and occur in different ecological habitats, social structure being as important as genetic information for immediate conservation management. The estuarine community, in particular, is highly vulnerable and appropriate conservation measures are needed in order to maintain its connectivity with the adjacent, semi-enclosed coastal communities.
Journal article
Published 2021
Scientific Reports, 11, 1, Art. 9236
Camera-trapping and capture-recapture models are the most widely used tools for estimating densities of wild felids that have unique coat patterns, such as Eurasian lynx. However, studies dealing with this species are predominantly on a short-term basis and our knowledge of temporal trends and population persistence is still scarce. By using systematic camera-trapping and spatial capture-recapture models, we estimated lynx densities and evaluated density fluctuations, apparent survival, transition rate and individual's turnover during five consecutive seasons at three different sites situated in the Czech–Slovak–Polish borderland at the periphery of the Western Carpathians. Our density estimates vary between 0.26 and 1.85 lynx/100 km2 suitable habitat and represent the lowest and the highest lynx densities reported from the Carpathians. We recorded 1.5–4.1-fold changes in asynchronous fluctuated densities among all study sites and seasons. Furthermore, we detected high individual’s turnover (on average 46.3 ± 8.06% in all independent lynx and 37.6 ± 4.22% in adults) as well as low persistence of adults (only 3 out of 29 individuals detected in all seasons). The overall apparent survival rate was 0.63 ± 0.055 and overall transition rate between sites was 0.03 ± 0.019. Transition rate of males was significantly higher than in females, suggesting male-biased dispersal and female philopatry. Fluctuating densities and high turnover rates, in combination with documented lynx mortality, indicate that the population in our region faces several human-induced mortalities, such as poaching or lynx-vehicle collisions. These factors might restrict population growth and limit the dispersion of lynx to other subsequent areas, thus undermining the favourable conservation status of the Carpathian population. Moreover, our study demonstrates that long-term camera-trapping surveys are needed for evaluation of population trends and for reliable estimates of demographic parameters of wild territorial felids, and can be further used for establishing successful management and conservation measures.
Journal article
Challenges of collecting blow from small cetaceans
Published 2019
Ecosphere, 10, 10, Article e02901
We trialed the collection of blow samples using a waterproof electric multirotor (quadcopter) drone from two free‐ranging dolphin species, the abundant and approachable bottlenose dolphin (Tursiops aduncus) and the less common and boat shy humpback dolphin (Sousa sahulensis). This drone was fast, maneuverable, and quiet compared to other drones commonly used in studies of cetaceans and relative to their hearing thresholds. We were successful in collecting blow samples from four individual dolphins (three bottlenose dolphins and one humpback dolphin) in two groups. The success of obtaining samples was dependent on the individual dolphin's activity. We were successful in sampling when dolphins were resting and socializing but found that socializing dolphins were not predictable in their surfacing and direction and therefore do not recommend drone sampling socializing dolphins. The suitability and preference of the sampling technique over biopsy sampling is highly dependent on the dolphin activity. We also attempted to extract DNA from the blow samples with the aim of assessing the feasibility of using blow sampling by drone for population genetic studies. We were unsuccessful in extracting DNA and recommend that others attempting to sample dolphin blow with a drone should prioritize collecting a larger volume of blow that may yield adequate concentrations of DNA to be amplified. Blow sample volume could potentially be increased by sampling with more absorbent materials.
Journal article
Published 2019
Marine Mammal Science, 35, 3, 732 - 759
The forecast for the viability of populations depends upon metapopulation dynamics: the combination of reproduction and mortality within populations, as well as dispersal between populations. This study focuses on an Indo-Pacific bottlenose dolphin (Tursiops aduncus) population in coastal waters near Bunbury, Western Australia. Demographic modeling of this population suggested that recent reproductive output was not sufficient to offset mortality. Migrants from adjacent populations might make up this deficit, so that Bunbury would act as a “sink,” or net recipient population. We investigated historical dispersal in and out of Bunbury, using microsatellites and mitochondrial DNA of 193 dolphins across five study locations along the southwestern Australian coastline. Our results indicated limited gene flow between Bunbury and adjacent populations. The data also revealed a net-dispersal from Bunbury to neighboring populations, with microsatellites showing that more than twice as many individuals per generation dispersed out of Bunbury than into Bunbury. Therefore, in historic times, Bunbury appears to have acted as a source population, supporting nearby populations. In combination with the prior finding that Bunbury is currently not producing surplus offspring to support adjacent populations, this potential reversal of source-sink dynamics may have serious conservation implications for Bunbury and other populations nearby.
Journal article
Published 2019
Frontiers in Marine Science, 6, Article 215
Manta rays (Mobula spp.) are highly valued in nature-based tourism globally. In Indonesia, although manta rays are protected, critical information is lacking on their habitat use, population dynamics and movements. We investigate the population structure and residency patterns of reef manta rays (Mobula alfredi) in the Nusa Penida Marine Protected Area (MPA). From photo-identification data logged by citizen scientists and trained observers (mantamatcher.org), we identified 624 reef manta rays from 5,913 sightings (January 2012–April 2018) based on their unique ventral coloration patterns. Year-round records were collected from two shallow (<20 m) reefs – Manta Bay (MB; n = 3,029 sightings) and Manta Point (MP; n = 3,058) – that are used frequently by tourism operators. Maximum likelihood techniques and a Markov movement analysis were used to model residency patterns and movement between these sites within the MPA. Manta rays at MB were predominantly male (64%, n = 261 individuals), with immature males (14%, n = 59) being sighted most frequently (39%, n = 1,170). In contrast, few immature individuals were sighted at MP (6%, n = 28), and they were sighted on few occasions (2%, n = 45), while mature female manta rays comprised 26% (n = 127) of the MP community and were the most frequently sighted (48%, n = 1,413). Lagged identification rates indicated high site fidelity at each location. However, 44% (n = 278) of individuals moved between the two sites and cumulative discovery curves showed a continued recruitment of individuals over the 6 years of the study. In addition, the behaviors displayed by the manta rays differed markedly between the two sites: MB appears to be a foraging ground, especially for juveniles, and potentially a nursery, while MP is used mainly for cleaning and courtship, indicating a social and reproductive site. Reproductive behavior coincided with the peak annual sightings in May. To prevent disturbance to this threatened species by tourism, regulations for the number of boats and interactions, especially during key reproductive times should be considered. Further, strict fishing regulation in the area is recommended as fishing gear entanglement was identified as a threat to this population.
Journal article
Published 2017
Frontiers in Marine Science, 4, Article 148
Environmental impact assessments must be addressed at a scale that reflects the biological organization for the species affected. It can be challenging to identify the relevant local wildlife population for impact assessment for those species that are continuously distributed and highly mobile. Here, we document the existence of local communities of Indo-Pacific bottlenose dolphins (Tursiops aduncus) inhabiting coastal and estuarine waters of Perth, Western Australia, where major coastal developments have been undertaken or are proposed. Using sighting histories from a 4-year photo-identification study, we investigated fine-scale, social community structure of dolphins based on measures of social affinity, and network (Half-Weight Index-HWI, preferred dyadic association tests, and Lagged Association Rates-LAR), home ranges, residency patterns (Lagged Identification Rates-LIR), and genetic relatedness. Analyses revealed four socially and spatially distinct, mixed-sex communities. The four communities had distinctive social patterns varying in strength, site fidelity, and residency patterns. Overlap in home ranges and relatedness explained little to none of the association patterns between individuals, suggesting complex local social structures. The study demonstrated that environmental impact assessments for mobile, continuously distributed species must evaluate impacts in light of local population structure, especially where proposed developments may affect core habitats of resident communities or sub-populations. Here, the risk of local extinction is particularly significant for an estuarine community because of its small size, limited connectivity with adjacent communities, and use of areas subject to intensive human use. In the absence of information about fine-scale population structure, impact assessments may fail to consider the appropriate biological context.
Journal article
Applying the multistate capture-recapture robust design to characterize metapopulation structure
Published 2017
Methods in Ecology and Evolution, 8, 11, 1547 - 1557
Population structure must be considered when developing mark-recapture (MR) study designs as the sampling of individuals from multiple populations (or subpopulations) may increase heterogeneity in individual capture probability. Conversely, the use of an appropriate MR study design which accommodates heterogeneity associated with capture occasion varying covariates due to animals moving between 'states' (i.e. geographic sites) can provide insight into how animals are distributed in a particular environment and the status and connectivity of subpopulations. The multistate closed robust design (MSCRD) was chosen to investigate: (i) the demographic parameters of Indo-Pacific bottlenose dolphin (Tursiops aduncus) subpopulations in coastal and estuarine waters of Perth, Western Australia; and (ii) how they are related to each other in a metapopulation. Using 4 years of year-round photo-identification surveys across three geographic sites, we accounted for heterogeneity of capture probability based on how individuals distributed themselves across geographic sites and characterized the status of subpopulations based on their abundance, survival and interconnection. MSCRD models highlighted high heterogeneity in capture probabilities and demographic parameters between sites. High capture probabilities, high survival and constant abundances described a subpopulation with high fidelity in an estuary. In contrast, low captures, permanent and temporary emigration and fluctuating abundances suggested transient use and low fidelity in an open coastline site. Estimates of transition probabilities also varied between sites, with estuarine dolphins visiting sheltered coastal embayments more regularly than coastal dolphins visited the estuary, highlighting some dynamics within the metapopulation. Synthesis and applications. To date, bottlenose dolphin studies using mark-recapture approach have focussed on investigating single subpopulations. Here, in a heterogeneous coastal-estuarine environment, we demonstrated that spatially structured bottlenose dolphin subpopulations contained distinct suites of individuals and differed in size, demographics and connectivity. Such insights into the dynamics of a metapopulation can assist in local-scale species conservation. The MSCRD approach is applicable to species/populations consisting of recognizable individuals and is particularly useful for characterizing wildlife subpopulations that vary in their vulnerability to human activities, climate change or invasive species.
Report
Published 2017
The Australian snubfin dolphin (Orcaella heinsohni, ‘snubfin dolphin’ hereafter) and Australian humpback dolphin (Sousa sahulensis, ‘humpback dolphin’ hereafter) are poorly understood species of dolphin whose global distribution is restricted to shallow coastal and estuarine waters of northern Australia and southern New Guinea.
Here, we investigate the population genetic structure and relative abundance of these two species at selected study sites in the Kimberley region of north-western Australia. Additionally, we investigate the application of passive acoustic monitoring (PAM) as an effective technique for monitoring these species in the remote waters of the Kimberley region, with potential applications across northern Australia.