Output list
Journal article
Published 2024
Journal of Hazardous Materials, 483, 136682
Plastic pollution in terrestrial environments is a growing concern, with an increasing focus on the impact of plastic additives on soil ecosystems. We evaluated the impact of additives from conventional plastics (ACP) and biodegradable plastics (ABP) on the soil nematode, Pratylenchus neglectus. The additives represented five functional classes (antioxidants, colourants, flame retardants, nucleating agents, and plasticisers). P. neglectus exhibited concentration-dependent mortality when exposed to the additives, with Tartrazine, an ABP colourant, inducing higher mortality compared to the conventional counterpart. No significant changes in the locomotory patterns of P. neglectus were observed, whereas oxidative stress significantly increased in response to all assistive treatments. Exposure to most of the additives resulted in a significant decline in nematode reproduction; ACPs generally caused more severe effects than ABPs. Our findings highlight a complexity in how plastic additives impact soil organisms and challenge the assumption that ABPs may be universally safer for ecosystems. The study emphasises the importance of conducting ecotoxicological assessments of specific ABPs on important species to inform the design of environmentally sustainable plastics. The results also suggest that P. neglectus could serve as a valuable sentinel organism for evaluating the ecological impacts of plastic pollution in soil.
Journal article
Nature’s Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects
Published 2024
Polymers, 16, 12, 1671
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer’s degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Journal article
Published 2024
Journal of Applied Entomology, 148, 7, 738 - 745
The tomato potato psyllid, Bactericera cockerelli Šulc, originating from North and Central America, poses a serious threat to Solanaceae crops in Australia. This study investigates the potential of the Australian native and commercially available green lacewing, Mallada signatus Schneider, as a biological control agent for B. cockerelli. The effect of feeding on B. cockerelli on the development rate and survival, of M. signatus were evaluated. Further, a greenhouse cage study was conducted to determine the optimal density of M. signatus larvae needed to effectively control an established B. cockerelli population. In our study, the third instar larvae of M. signatus consumed over 75 B. cockerelli nymphs in 24 h. Following the introduction of M. signatus larvae to caged tomato plants, eight M. signatus larvae per caged tomato plant decreased B. cockerelli population by 64% at the end of the sampling. These results indicated M. signatus, particularly at the larval stage, is an effective biological control option for B. cockerelli, especially in greenhouse tomato cultivation. This research offers valuable insights for the Australian horticultural industry, presenting a viable, eco-friendly alternative to traditional, chemical pesticide-reliant pest management strategies.
Journal article
Published 2023
Journal of Hazardous Materials, 443, Pt. B, Art. 130256
Phthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination.
Journal article
Published 2022
Critical Reviews in Environmental Science and Technology, 1 - 17
Not only do soils provide 98.7% of the calories consumed by humans, they also provide numerous other functions upon which planetary survivability closely depends. However, our continuously increasing focus on soils for biomass provision (food, fiber, and energy) through intensive agriculture is rapidly degrading soils and diminishing their capacity to deliver other vital functions. These tradeoffs in soil functionality – the increased provision of one function at the expense of other critical planetary functions – are the focus of this review. We examine how land-use change for biomass provision has decreased the ability of soils to regulate the carbon pool and thereby contribute profoundly to climate change, to cycle the nutrients that sustain plant growth and ecosystem health, to protect the soil biodiversity upon which many other functions depend, and to cycle the Earth’s freshwater supplies. We also examine how this decreasing ability of soil to provide these other functions can be halted and reversed. Despite the complexity and the interconnectedness of soil functions, we show that soil organic carbon plays a central role and is a master indicator for soil functioning and that we require a better understanding of the factors controlling the behavior and persistence of C in soils. Given the threats facing humanity and their economies, it is imperative that we recognize that Soil Security is itself an existential challenge and that we need to increase our focus on the multiple functions of soils for long-term human welfare and survivability of the planet.
Journal article
Addition of base cations increases microbial carbon use efficiency and biomass in acidic soils
Published 2021
Soil Biology and Biochemistry, 161, Article 108392
The leaching of base cations in acidic soils can result in calcium (Ca2+) and magnesium (Mg2+) deficiencies, which are important for microbial cell function. We aimed to determine if microbial carbon use efficiency (CUE) and microbial biomass carbon (MBC) were limited in acidic soils due to a lack of base cations. Microbial CUE across a range of agricultural soils (n = 970; pHCa 3.4–7.9) treated with either deionised H2O (control) or a solution of 300 mM CaCl2 + 300 mM MgCl2 (+Base cations) was determined using a14C radioisotope tracer approach. Our results showed that the addition of base cations significantly increased microbial CUE (by up to 20%) at pHCa < 4.7; which coincided with a steep increase in exchangeable acidity. Base cation addition significantly increased MBC in nil-limed soils (pHCa 4.6) from 494 mg C kg−1 to 769 mg C kg−1 when plant residue was added, but not in limed soils (pHCa 6.2). Our findings indicate that the addition of base cations to highly acidic soils can increase microbial growth, thus aiding with carbon sequestration in these agricultural soils.
Book
Soil Quality: 5 Soil Biology (ebook)
Published 2021
The publication Soil Biology provides a detailed understanding of the multifunctional role of soil and its inhabitants – including beneficial and disease-causing organisms. This book explores the three-dimensional structure of soil as a habitat for the survival of soil biota, biological functions that benefit plant growth, detrimental soilborne diseases and nematode pests, and how climate and management practice influence soil biota and their functions.
Book
Soil Quality: 6 Soil Compaction (ebook)
Published 2021
The publication Soil Compaction explains the causes, effects, diagnosis, and management of compaction in agricultural soil, supported by evidence-based case studies and farmer experiences.
Journal article
Published 2019
Soil Biology and Biochemistry, 138, Article 107584
The microbial partitioning of organic carbon (C) into either anabolic (i.e. growth) or catabolic (i.e. respiration) metabolic pathways represents a key process regulating the amount of added C that is retained in soil. The factors regulating C use efficiency (CUE) in agricultural soils, however, remain poorly understood. The aim of this study was to investigate substrate CUE from a wide range of soils (n = 970) and geographical area (200,000 km2) to determine which soil properties most influenced C retention within the microbial community. Using a 14C-labeling approach, we showed that the average CUE across all soils was 0.65 ± 0.003, but that the variation in CUE was relatively high within the sample population (CV 14.9%). Of the major properties measured in our soils, we found that pH and exchangeable aluminum (Al) were highly correlated with CUE. We identified a critical pH transition point at which CUE declined (pH 5.5). This coincided exactly with the point at which Al3+ started to become soluble. In contrast, other soil factors [e.g. total C and nitrogen (N), dissolved organic C (DOC), clay content, available calcium, phosphorus (P) and sulfur (S), total base cations] showed little or no relationship with CUE. We also found no evidence to suggest that nutrient stoichiometry (C:N, C:P and C:S ratios) influenced CUE in these soils. Based on current evidence, we postulate that the decline in microbial CUE at low pH and high Al reflects a greater channeling of C into energy intensive metabolic pathways involved in overcoming H+/Al3+ stress (e.g. cell repair and detoxification). The response may also be associated with shifts in microbial community structure, which are known to be tightly associated with soil pH. We conclude that maintaining agricultural soils above pH 5.5 maximizes microbial energy efficiency.
Book
Soil Quality: 3 Soil Organic Matter (ebook)
Published 2018
The publication Soil Organic Matter provides a detailed understanding of the role and functioning of soil organic matter in farming systems, including the implications of a wide range of agricultural management practices.