Output list
Journal article
Characterising commensal and pathogenic staphylococcal interactions with neonatal and adult blood
Published 2026
Scientific reports, 16, 1, 777
The abundant skin commensal, Staphylococcus epidermidis, is the leading cause of late-onset sepsis (LOS) in preterm infants but rarely causes infections in term infants and adults. Staphylococcal virulence mechanisms and the role of the preterm immune responses in driving these life-threatening infections remain poorly understood. Using an ex vivo sepsis model, we challenged whole blood from very preterm infants (30-32 weeks gestational age, GA; n = 8), term infants (> 37 weeks GA; n = 8), and young adults (18-25 years; n = 8) with either live S. epidermidis or S. aureus (~ 10
colony-forming units, CFU/ml) for 90 min. Dual RNA-sequencing (RNA-seq) was performed to simultaneously assess host and pathogen gene expression profiles, identifying common and pathogen-specific responses across cohorts. We found shared immune processes induced in all age groups upon bacterial challenge, including cytokine (IL1A, IL1B, IL6, IFNB1) and chemokine (CCL20, CCL3, CCL7, CXCL2) signalling. Preterm infants also exhibited unique responses, such as increased platelet activation and fibrin clot formation, Wnt signalling, and hypoxia pathways in response to S. epidermidis challenge. Our findings suggest that bacterial gene co-expression, including iron acquisition and heme biosynthesis genes, are also influenced by the hosts developmental age, highlighting the complexity of host-bacterial interactions in the early stages of neonatal sepsis.
Journal article
Published 2025
Microbial genomics, 11, 9, 001501
Dual RNA-sequencing (dual RNA-seq) holds significant promise for deciphering bacterial virulence mechanisms during systemic infections. However, its application in sepsis research is hindered by technical challenges, including a low bacterial burden in blood and limited sample volumes and RNA yield from vulnerable populations, such as neonates. We developed an optimized protocol [dual RNA isolation from blood (DRIB)] for simultaneous stabilization, isolation and purification of high-quality host leukocyte and bacterial RNA from low-volume whole blood samples (0.5 ml). This protocol is compatible with clinical sample collection workflows and high-throughput RNA sequencing. The feasibility of DRIB for dual RNA-seq was validated using a pilot cohort of clinical adult sepsis samples, enabling the investigation of host–bacterial gene expression during sepsis. The DRIB protocol yielded 2.10–6.91 µg of total RNA per clinical sample in our pilot cohort. Dual-species ribosomal RNA (rRNA) depletion and RNA-seq generated 16.6–24.8 million filtered reads per sample, with 63±7% of reads uniquely mapped to host or bacterial sequences. Host genes accounted for 51–68% (8.4–10.9 million) reads, while 0.5–6.7% (79,496–789,808 reads) mapped to bacterial genomes. Bioinformatic analysis revealed that both shared and individual transcriptional patterns were identified in host and bacterial responses, including pathways related to immune metabolism and metal-ion binding. Our optimized DRIB protocol and RNA-seq pipeline effectively captured both host and bacterial RNA transcription in clinical sepsis samples. Expanding this approach to larger cohorts and varying disease timepoints will provide crucial new insights into host–bacterial gene co-expression dynamics in sepsis progression and outcomes.