Output list
Journal article
Published 2025
Photochemical & photobiological sciences
This work is not a product of the U.S. Government or the U.S. Environmental Protection Agency, and the author is not doing this work in any governmental capacity. This research was not performed or funded by EPA and was not subject to EPA’s quality system requirements. The views expressed in this journal article are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.
Journal article
Published 2025
Photochemical & photobiological sciences, 24, 3, 357 - 392
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century. Potential environmental consequences of climate intervention scenarios are also briefly discussed, illustrating the large uncertainties of, for example, Stratospheric Aerosol Injection (SAI). Modelling studies predict that, although SAI would cool the Earth's surface, other climate factors would be affected, including stratospheric ozone depletion and precipitation patterns. The contribution to global warming of replacements for ozone-depleting substances (ODS) are assessed. With respect to the breakdown products of chemicals under the purview of the Montreal Protocol, the risks to ecosystem and human health from the formation of trifluoroacetic acid (TFA) as a degradation product of ODS replacements are currently de minimis. UV-radiation and climate change continue to have complex interactive effects on the environment due largely to human activities. UV-radiation, other weathering factors, and microbial action contribute significantly to the breakdown of plastic waste in the environment, and in affecting transport, fate, and toxicity of the plastics in terrestrial and aquatic ecosystems, and the atmosphere. Sustainability demands continue to drive industry innovations to mitigate environmental consequences of the use and disposal of plastic and plastic-containing materials. Terrestrial ecosystems in alpine and polar environments are increasingly being exposed to enhanced UV-radiation due to earlier seasonal snow and ice melt because of climate warming and extended periods of ozone depletion. Solar radiation, including UV-radiation, also contributes to the decomposition of dead plant material, which affects nutrient cycling, carbon storage, emission of greenhouse gases, and soil fertility. In aquatic ecosystems, loss of ice cover is increasing the area of polar oceans exposed to UV-radiation with possible negative effects on phytoplankton productivity. However, modelling studies of Arctic Ocean circulation suggests that phytoplankton are circulating to progressively deeper ocean layers with less UV irradiation. Human health is also modified by climate change and behaviour patterns, resulting in changes in exposure to UV-radiation with harmful or beneficial effects depending on conditions and skin type. For example, incidence of melanoma has been associated with increased air temperature, which affects time spent outdoors and thus exposure to UV-radiation. Overall, implementation of the Montreal Protocol and its Amendments has mitigated the deleterious effects of high levels of UV-radiation and global warming for both environmental and human health.
Journal article
Published 2024
Photochemical & photobiological sciences, 23, 1087 - 1115
The protection of Earth’s stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme’s Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.
Journal article
Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol
Published 2024
Global change biology, 30, 4, e17279
There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.
Journal article
Published 2024
Photochemical & photobiological sciences
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Journal article
Published 2023
Foods, 12, 7, Art. 1429
Fresh mushrooms exposed to ultraviolet (UV) radiation prior to drying generate high concentrations of vitamin D2. The aim of this study was to determine the retention of D vitamers in mushrooms that were pulse UV irradiated, then air dried, and stored for up to 12 months. Fresh button mushrooms (A. bisporus) were exposed to pulsed UV radiation (dose 200 mJ/cm2, peak of 17.5 W/cm2), air dried and vacuum sealed before being stored in the dark at room temperature. After storage, samples were freeze dried and quantified for D vitamers using triple quadrupole mass spectrometry. After 3, 6 and 12 months of storage, there was 100% (11.0 ± 0.8 µg/g dry weight (DW), 93% (10.1 ± 0.6 µg/g DW) and 58% (5.5 ± 0.6 µg/g DW) retention of vitamin D2 and 88% (0.14 ± 0.01 µg/g DW), 71% (0.11 ± 0.01 µg/g DW) and 68% (0.1 ± 0.01 µg/g DW) retention of 25-hydroxyvitamin D2 (25(OH)D2), respectively. Compared to the irradiated dried mushrooms that were not stored, the D vitamer concentration was statistically significantly lower (p < 0.05) at 6 and 12 months for 25(OH)D2 and at 12 months for vitamin D2. Sufficient vitamin D2 (99 µg) remained after 12 months storage to provide at least 100% of daily dietary vitamin D requirements in a 20 g serving.
Journal article
Published 2023
Food chemistry, 424, 136387
Vitamin D deficiency has widespread global prevalence. Fresh mushrooms exposed to ultraviolet (UV) radiation generate vitamin D2 which remains after drying. It is not clear if vitamin D2 is retained after rehydration and cooking of dried mushrooms. The aim of this study was to determine the true retention of both vitamin D2 and 25-hydroxyvitamin D2 (25(OH)D2) after cooking UV-irradiated, air-dried, then rehydrated button mushrooms (Agaricus bisporus). Mushrooms were exposed to pulsed UV radiation, then air-dried in a convection oven, followed by rehydration in warm water. Samples were cooked in three different ways: frying (5 min), baking (10 min, 200 °C) and boiling (20 min, 90 °C). Compared to rehydrated, uncooked controls, there was a high retention of D vitamers (≥95%) after cooking. Frying and baking resulted in significantly higher vitamin D2 retention compared to boiling (p < 0.0001). UV-irradiated, dried mushrooms are a valuable source of vitamin D2 after rehydration and cooking.
Journal article
Published 2023
Journal of food composition and analysis, 115, 105034
Fresh and dried mushrooms naturally generate vitamin D2 when exposed to ultraviolet (UV) radiation. Vitamin D2 and 25-hydroxyvitamin D2 (25(OH)D2) concentrations were compared in dried button mushrooms (Agaricus bisporus) exposed to pulsed UV radiation either before or after air-drying. A further aim was to assess the effect of air-drying on the generation of D vitamers. Fresh button mushrooms were irradiated (Irr) with a total of 200 mJ/cm2 pulsed UV radiation before (Irr/AD) or after (AD/Irr) being air-dried (AD). A third group of fresh button mushrooms was irradiated but not air-dried (Irr). Control mushrooms were fresh and untreated. The D vitamers were quantified in freeze-dried samples using triple quadrupole mass spectrometry. Irr/AD mushrooms had more than double the concentration of vitamin D2 than AD/Irr mushrooms (9.5 µg/g dry weight (dw) vs 4.6 µg/g dw). However, Irr mushrooms contained 6.3 µg/g dw. The concentration of 25(OH)D2 in Irr mushrooms was 0.05 μg/g dw, while 0.14 μg/g dw was detected in Irr/AD mushrooms. There was no detectable 25(OH)D2 in control mushrooms, nor in AD/Irr mushrooms. The sequence of irradiating and drying mushrooms was a key factor in generating vitamin D2.
•Pulsed UV radiation of dried mushrooms generates high amounts of vitamin D2.•Vitamin D2 higher when mushrooms are exposed to UV before drying vs after drying.•UV radiation generated 25-hydroxyvitamin D2 in fresh, but not dried, mushrooms.
Journal article
Published 2023
Photochemical & photobiological sciences, 22, 5, 1049 - 1091
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Journal article
The Montreal Protocol and the fate of environmental plastic debris
Published 2023
Photochemical & photobiological sciences, 22, 5, 1203 - 1211
Microplastics (MPs) are an emerging class of pollutants in air, soil and especially in all aquatic environments. Secondary MPs are generated in the environment during fragmentation of especially photo-oxidised plastic litter. Photo-oxidation is mediated primarily by solar UV radiation. The implementation of the Montreal Protocol and its Amendments, which have resulted in controlling the tropospheric UV-B (280-315 nm) radiation load, is therefore pertinent to the fate of environmental plastic debris. Due to the Montreal Protocol high amounts of solar UV-B radiation at the Earth's surface have been avoided, retarding the oxidative fragmentation of plastic debris, leading to a slower generation and accumulation of MPs in the environment. Quantifying the impact of the Montreal Protocol in reducing the abundance of MPs in the environment, however, is complicated as the role of potential mechanical fragmentation of plastics under environmental mechanical stresses is poorly understood.