About me
Organisational Affiliations
Highlights - Output
Journal article
Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide
Published 2023
Plants (Basel), 12, 2, Art. 379
Storing potato tubers at cold temperatures, either for transport or continuity of supply, is associated with the conversion of sucrose to reducing sugars. When cold-stored cut tubers are processed at high temperatures, with endogenous asparagine, acrylamide is formed. Acrylamide is classified as a carcinogen. Potato processors prefer cultivars which accumulate fewer reducing sugars and thus less acrylamide on processing, and suitable processing cultivars may not be available. We used CRISPR-Cas9 to disrupt the genes encoding vacuolar invertase (VInv) and asparagine synthetase 1 (AS1) of cultivars Atlantic and Desiree to reduce the accumulation of reducing sugars and the production of asparagine after cold storage. Three of the four guide RNAs employed induced mutation frequencies of 17-98%, which resulted in deletions, insertions and substitutions at the targeted gene sites. Eight of ten edited events had mutations in at least one allele of both genes; for two, only the VInv was edited. No wild-type allele was detected in both genes of events DSpco7, DSpFN4 and DSpco12, suggesting full allelic mutations. Tubers of two Atlantic and two Desiree events had reduced fructose and glucose concentrations after cold storage. Crisps from these and four other Desiree events were lighter in colour and included those with 85% less acrylamide. These results demonstrate that multiplex CRISPR-Cas9 technology can generate improved potato cultivars for healthier processed potato products.
Journal article
Published 2022
Plants, 11, 19, Article 2538
Genome- or gene-editing (abbreviated here as ‘GEd’) presents great opportunities for crop improvement. This is especially so for the countries in the Asia-Pacific region, which is home to more than half of the world’s growing population. A brief description of the science of gene-editing is provided with examples of GEd products. For the benefits of GEd technologies to be realized, international policy and regulatory environments must be clarified, otherwise non-tariff trade barriers will result. The status of regulations that relate to GEd crop products in Asian countries and Australasia are described, together with relevant definitions and responsible regulatory bodies. The regulatory landscape is changing rapidly: in some countries, the regulations are clear, in others they are developing, and some countries have yet to develop appropriate policies. There is clearly a need for the harmonization or alignment of GEd regulations in the region: this will promote the path-to-market and enable the benefits of GEd technologies to reach the end-users.