Output list
Journal article
Published 2025
Muscles, 4, 4, 53
Inclusion body myositis (IBM) is a late-onset, treatment-resistant inflammatory myopathy. Approximately half of IBM patients develop autoantibodies against cytosolic 5′-nucleotidase 1A (cN1A), but their role in disease pathogenesis remains unclear. This pilot study examined the effects of anti-cN1A-positive IBM serum on human primary myotubes’ transcriptome profile, using anti-cN1A-negative IBM and healthy sera as controls. Exposure to anti-cN1A-positive serum altered the expression of 1126 genes, with upregulation of adaptive immune response genes, notably CTSH and CTSZ, encoding cathepsins H and Z. These findings were validated using a publicly available independent dataset comprising transcriptomes from fresh muscle tissue samples. NT5C1A mRNA, which encodes cN1A, was not detected in cultured myotubes regardless of the presence of autoantibodies. The findings suggest distinct pathological mechanisms in anti-cN1A-positive IBM, independent of direct antibody-target interactions. The role of cathepsins in IBM pathogenesis warrants further investigation.
Journal article
Expression and Site-Specific Biotinylation of Human Cytosolic 5′-Nucleotidase 1A in Escherichia coli
Published 2025
Methods and protocols, 8, 3, 66
Autoantibodies targeting cytosolic 5′-nucleotidase 1A (cN1A) are found in several autoimmune diseases, including inclusion body myositis (IBM), Sjögren’s syndrome, and systemic lupus erythematosus. While they have diagnostic relevance for IBM, little is known about the autoreactive B cells that produce these antibodies. To address this, we developed a robust protocol for the expression and site-specific biotinylation of recombinant human cN1A in
Escherichia coli
. The resulting antigen is suitable for generating double-labelled fluorescent baits for the isolation and characterisation of cN1A-specific B cells by flow cytometry. Site-specific biotinylation was achieved using the AviTag and BirA ligase, preserving the protein’s structure and immunoreactivity. Western blot analysis confirmed that the biotinylated cN1A was recognised by both human and rabbit anti-cN1A antibodies. Compared to conventional chemical biotinylation, this strategy minimises structural alterations that may affect antigen recognition. This approach provides a reliable method for producing biotinylated antigens for use in immunological assays. While demonstrated here for cN1A, the protocol can be adapted for other autoantigens to support studies of antigen-specific B cells in autoimmune diseases.