Output list
Journal article
To splice or not to splice: pseudoexons in neurological disease and opportunities for intervention
Published 2025
Current opinion in genetics & development, 92, 102343
Accurate exon selection and processing of pre-messenger RNA are crucial for normal gene expression. Mutations that alter splicing disrupt pre-mRNA processing and can have diverse effects on transcript structure, making the consequences of many such mutations difficult to predict. While next-generation sequencing technologies have transformed genetic diagnosis for many patients, deep intronic variants generally evade detection and characterisation. Of all the known types of splicing mutations, the most elusive to predict are those that activate pseudoexons. Because transcripts that contain pseudoexons are otherwise generally intact, exclusion (or ‘skipping’) of the pseudoexon during processing of the pre-mRNA is likely to generate a normal, functional mRNA. Characterisation of pseudoexon mutations will open opportunities for the development of antisense oligonucleotide strategies to overcome these disease-causing mutations.
Journal article
Published 2024
International journal of molecular sciences, 25, 15, 8495
Pathogenic variations in the fused in sarcoma (FUS) gene are associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS). As FUS-ALS is a dominant disease, a targeted, allele-selective approach to FUS knockdown is most suitable. Antisense oligonucleotides (AOs) are a promising therapeutic platform for treating such diseases. In this study, we have explored the potential for allele-selective knockdown of FUS. Gapmer-type AOs targeted to two common neutral polymorphisms in FUS were designed and evaluated in human fibroblasts. AOs had either methoxyethyl (MOE) or thiomorpholino (TMO) modifications. We found that the TMO modification improved allele selectivity and efficacy for the lead sequences when compared to the MOE counterparts. After TMO-modified gapmer knockdown of the target allele, up to 93% of FUS transcripts detected were from the non-target allele. Compared to MOE-modified AOs, the TMO-modified AOs also demonstrated reduced formation of structured nuclear inclusions and SFPQ aggregation that can be triggered by phosphorothioate-containing AOs. How overall length and gap length of the TMO-modified AOs affected allele selectivity, efficiency and off-target gene knockdown was also evaluated. We have shown that allele-selective knockdown of FUS may be a viable therapeutic strategy for treating FUS-ALS and demonstrated the benefits of the TMO modification for allele-selective applications.
Journal article
Published 2021
Scientific Reports, 11, 1, Art. 11474
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of FTLD cases. This mislocalisation from the nucleus into the cytoplasm and TDP-43 cleavage are associated with pathology, however, the drivers of these changes are unknown. p62 is invariably also present within these aggregates. We show that p62 overexpression causes TDP-43 mislocalisation into cytoplasmic aggregates, and aberrant TDP-43 cleavage that was dependent on both the PB1 and ubiquitin-associated (UBA) domains of p62. We further show that p62 overexpression induces neuron death. We found that stressors (proteasome inhibition and arsenic) increased p62 expression and that this shifted the nuclear:cytoplasmic TDP-43 ratio. Overall, our study suggests that environmental factors that increase p62 may thereby contribute to TDP-43 pathology in ALS and FTLD.
Journal article
ALS genetics, mechanisms, and therapeutics: Where are we now?
Published 2019
Frontiers in Neuroscience, 13
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.