Output list
Book chapter
Published 2026
Virtual Reality and Visualization Based on AI Technologies, 54 - 68
Hyper-Realistic Virtual Reality (Hyper-Real VR) environments have the potential to elicit profound emotional responses by leveraging high-fidelity visual elements. While previous research has extensively examined the role of Virtual Reality (VR) in evoking negative emotions, there is limited understanding of how Hyper-Real VR can be systematically designed to induce positive emotions, such as awe and calm. This paper introduces a conceptual framework that examines the impact of four key visual factors, i.e. geometry, material surfaces, lighting, and colour, and their sub-factors in shaping emotional experiences. Geometry, including scale and proportion, influences spatial perception and depth, which are crucial for inducing awe. Material surfaces, such as reflections and textures, enhance realism and presence, reinforcing emotional engagement. Lighting, particularly global illumination and shadows, modulates mood and spatial perception, creating immersive experiences that promote awe and calm. Colour, through physically based rendering (PBR), values, and tones, shapes emotional responses by enhancing realism and aesthetic harmony. This framework integrates theories from presence research, perceptual psychology, and environmental design to establish a structured approach for designing emotionally engaging Hyper-Real VR environments. By mapping visual factors to emotional outcomes, it provides a foundation for optimising VR experiences to elicit awe and calm. The proposed framework has implications for fields such as digital therapy, mental well-being, and immersive entertainment. Future research will validate this model through empirical studies, further refining the role of hyper-realistic visual elements in emotional engagement within VR.
Book chapter
Published 2026
Virtual Reality and Visualization Based on AI Technologies, 242 - 258
Vaccine hesitancy is still a significant barrier to achieving widespread immunity in many communities. In this paper, we evaluated a serious game focusing on vaccination against COVID-19. This study investigates the potential of virtual reality (VR) as an innovative educational tool to address this issue. Focusing on the serious game “Spike Force”, which simulates the mechanisms of the mRNA COVID-19 vaccine, this research evaluates the game’s effectiveness in enhancing participants’ understanding, altering attitudes, and influencing behaviours related to vaccination. Participants engaged with “Spike Force,” and their knowledge, attitudes, and behaviours were assessed through pre- and post-gameplay questionnaires. The findings show that immersive VR experiences can significantly improve vaccine literacy, increase confidence in vaccine-related discussions, and promote positive behavioural changes toward vaccination. These results suggest that VR could play an effective advocacy role for public health education, particularly in combating vaccine hesitancy.
Preprint
Advances and Trends in the 3D Reconstruction of the Shape and Motion of Animals
Posted to a preprint site 22/08/2025
ArXiv.org
Reconstructing the 3D geometry, pose, and motion of animals is a long-standing problem, which has a wide range of applications, from biology, livestock management, and animal conservation and welfare to content creation in digital entertainment and Virtual/Augmented Reality (VR/AR). Traditionally, 3D models of real animals are obtained using 3D scanners. These, however, are intrusive, often prohibitively expensive, and difficult to deploy in the natural environment of the animals. In recent years, we have seen a significant surge in deep learning-based techniques that enable the 3D reconstruction, in a non-intrusive manner, of the shape and motion of dynamic objects just from their RGB image and/or video observations. Several papers have explored their application and extension to various types of animals. This paper surveys the latest developments in this emerging and growing field of research. It categorizes and discusses the state-of-the-art methods based on their input modalities, the way the 3D geometry and motion of animals are represented, the type of reconstruction techniques they use, and the training mechanisms they adopt. It also analyzes the performance of some key methods, discusses their strengths and limitations, and identifies current challenges and directions for future research.
Conference paper
Date presented 07/2025
9th International Conference on Artificial Intelligence and Virtual Reality, 11/07/2025–13/07/2025, Osaka, Japan
Vaccine hesitancy is still a significant barrier to achieving widespread immunity in many communities. In this paper, we evaluated a serious game fo-cusing on vaccination against COVID-19. This study investigates the potential of virtual reality (VR) as an innovative educational tool to address this issue. Focusing on the serious game " Spike Force " , which simulates the mechanisms of the mRNA COVID-19 vaccine, this research evaluates the game's effectiveness in enhancing participants' understanding, altering attitudes, and influencing behaviours related to vaccination. Participants engaged with " Spike Force, " and their knowledge, attitudes, and behaviours were assessed through pre-and post-gameplay questionnaires. The findings show that immersive VR experiences can significantly improve vaccine literacy, increase confidence in vaccine-related discussions, and promote positive behavioural changes toward vaccination. These results suggest that VR could play an effective advocacy role for public health education, particularly in combating vaccine hesitancy.
Journal article
ViCubeLab-An Integrated Platform Using VR to Visualise and Analyse Road Traffic Conditions
Published 2024
Journal of Advanced Research in Applied Sciences and Engineering Technology, 49, 2, 176 - 186
The main contribution of this paper is to introduce a framework for integrating Machine Learning (ML), Human, and Virtual Reality (VR) into one platform to promote a collaborative visualisation environment that can assist in better analysis and improve the human-machine teaming capability. This platform was demonstrated using a case study in ana-lysing road traffic conditions. The ‘Ab-normal Machine Learning Road Traffic Detection in VR (AbnMLRTD-VR)’ prototype system was developed to assist the human analyst. The proposed system has two main integrative components: a data-driven ML model and a 3D real-time visualisation in a VR environment. An unsupervised ML model was built using real traffic data. The AbnMLRTD-VR system highlights the outliers in the road sections in actual road contexts of a road traffic network. This gives the human analyst a 3D real-time immersive visualisation in a VR environment to evaluate road conditions. The AbnMLRTD-VR system demonstrated that it could help minimise the need for human pre-labelling of the data. It enables the visualisation of the road traffic conditions more meaningfully and to understand the context of the road traffic conditions of road sections at any given time.
Journal article
Published 2024
Journal of Advanced Research in Applied Sciences and Engineering Technology, 49, 2, 218 - 230
To improve users’ tendency towards shopping in Virtual Reality (VR), en-hancing the User Experience (UX) of the VR shopping environments is of primary importance. Product viewability, reachability, and personalisation are some of the primary UX factors in a shopping environment. This paper proposes and discusses three factors for a Personalised Adaptive Aisle (PAA) in a VR shopping environment to improve the shopping experience. They are 1) Shelf placement for viewability and reachability, 2) User view-point in VR, and 3) Personalised Product placement.
Journal article
Published 2022
IEEE Access, 10, 46354 - 46371
Engagement with upper limb rehabilitation post-stroke can improve rehabilitation outcomes. Virtual Reality can be used to make rehabilitation more engaging. In this paper, we propose a multiple case study to determine: (1) whether game design principles (identified in an earlier study as being likely to engage) actually do engage, in practice, a sample of stroke survivors with a Desktop Virtual Reality-based Serious Game designed for upper limb rehabilitation; and (2) what game design factors support the existence of these principles in the game. In this study, we considered 15 principles: awareness , feedback , interactivity , flow , challenge , attention , interest , involvement , psychological absorption , motivation , effort , clear instructions , usability , purpose , and a first-person view . Four stroke survivors used, for a period of 12 weeks, a Virtual Reality-based upper limb rehabilitation system called the Neuromender Rehabilitation System. The stroke survivors were then asked how well each of the 15 principles was supported by the Neuromender Rehabilitation System and how much they felt each principle supported their engagement with the system. All the 15 tested principles had good or reasonable support from the participants as being engaging. Use of feedback was emphasised as an important design factor for supporting the design principles, but there was otherwise little agreement in important design factors among the participants. This indicates that more personalised experiences may be necessary for optimised engagement. The insight gained can be used to inform the design of a larger scale statistical study into what engages stroke survivors with Desktop Virtual Reality-based upper limb rehabilitation.
Conference paper
How a mRNA COVID-19 Vaccine works inside a Cell: A Virtual Reality Serious Game
Published 2022
2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH), 10/08/2022–12/08/2022, Sydney, Australia
Vaccine hesitancy and uptake have been important issues in controlling the current COVID-19 pandemic in many regions around the globe, but the increase in vaccination rates has been slow or even halted in some countries. Therefore, people who have hesitated in getting the vaccine need to be addressed. One driver influencing vaccination uptake is closing the knowledge gap among the public by equipping them with a deeper understanding of how a vaccine works inside our cells to activate the immune system and develop immunity. Viral immunology is highly conceptual and requires an appreciation of molecular biology in the cell. To give individuals an intuitive awareness of the operation of a mRNA-type virus vaccine for COVID-19, we designed and developed a Virtual Reality (VR) based serious game called ‘Cell Traveler’. Through this innovative VR serious game, the player can control and interact with a sequence of critical real-life events inside a cell triggered by the injected mRNA COVID-19 vaccine. In this paper, we describe the prototype of the ‘Cell Traveler’. We utilize the concepts of serious game to create an experience to encourage students and the public to develop deeper mRNA vaccine knowledge through a memorable and fun experience.
Journal article
Published 2021
Information Processing in Agriculture, 8, 4, 494 - 504
The use of sensors for monitoring livestock has opened up new possibilities for the management of livestock in extensive grazing systems. The work presented in this paper aimed to develop a model for predicting the metabolisable energy intake (MEI) of sheep by using temperature, pitch angle, roll angle, distance, speed, and grazing time data obtained directly from wearable sensors on the sheep. A Deep Belief Network (DBN) algorithm was used to predict MEI, which to our knowledge, has not been attempted previously. The results demonstrated that the DBN method could predict the MEI for sheep using sensor data alone. The mean square error (MSE) values of 4.46 and 20.65 have been achieved using the DBN model for training and testing datasets, respectively. We also evaluated the influential sensor data variables, i.e., distance and pitch angle, for predicting the MEI. Our study demonstrates that the application of machine learning techniques directly to on-animal sensor data presents a substantial opportunity to interpret biological interactions in grazing systems directly from sensor data. We expect that further development and refinement of this technology will catalyse a step-change in extensive livestock management, as wearable sensors become widely used by livestock producers.
Conference paper
Game design principles influencing stroke survivor engagement for VR-Based upper limb rehabilitation
Published 2020
Proceedings of the 31st Australian Conference on Human-Computer-Interaction
31st Australian Conference on Human-Computer-Interaction (OzCHI) 2019, 02/12/2019–05/12/2019, Esplanade Hotel, Fremantle, Australia
Engagement with one's rehabilitation is crucial for stroke survivors. Serious games utilising desktop Virtual Reality could be used in rehabilitation to increase stroke survivors' engagement. This paper discusses the results of a user experience case study that was conducted with six stroke survivors to determine which game design principles are or would be important for engaging them with a desktop VR serious games designed for the upper limb rehabilitation. The results of our study showed the game design principles that warrant further investigation are awareness, feedback, interactivity, flow and challenge; and also important to a great extent are attention, involvement, motivation, effort, clear instructions, usability, interest, psychological absorption, purpose and a first-person view.