Output list
Preprint
SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration
Posted to a preprint site 2025
ArXiv.org
We present SymbioticRAG, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
Preprint
Large Language Models for Failure Mode Classification: An Investigation
Published 2023
ArXiv.org
In this paper we present the first investigation into the effectiveness of Large Language Models (LLMs) for Failure Mode Classification (FMC). FMC, the task of automatically labelling an observation with a corresponding failure mode code, is a critical task in the maintenance domain as it reduces the need for reliability engineers to spend their time manually analysing work orders. We detail our approach to prompt engineering to enable an LLM to predict the failure mode of a given observation using a restricted code list. We demonstrate that the performance of a GPT-3.5 model (F1=0.80) fine-tuned on annotated data is a significant improvement over a currently available text classification model (F1=0.60) trained on the same annotated data set. The fine-tuned model also outperforms the out-of-the box GPT-3.5 (F1=0.46). This investigation reinforces the need for high quality fine-tuning data sets for domain-specific tasks using LLMs.
Preprint
First online publication 2018
ArXiv.org
Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.