Output list
Journal article
Published 2023
Viruses, 15, 11, 2198
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies.
Journal article
Published 2023
Virology journal, 20, 1, 270
Background
Influenza A virus (IAV) is the only influenza virus causing flu pandemics (i.e., global epidemics of flu disease). Influenza (the flu) is a highly contagious disease that can be deadly, especially in high-risk groups. Worldwide, these annual epidemics are estimated to result in about 3 to 5 million cases of severe illness and in about 290,000 to 650,000 respiratory deaths. We intend to reveal the effect of IAV infection on the host′s metabolism, immune response, and neurotoxicity by using a mouse IAV infection model.
Methods
51 metabolites of murine blood plasma (33 amino acids/amino acid derivatives (AADs) and 18 metabolites of the tryptophan pathway) were analyzed by using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry with Electrospray Ionization at the acute (7 days post-infection (dpi)), resolution (14 dpi), and recovery (21 dpi) stages of the virus infection in comparison with controls.
Results
Among the 33 biogenic amino acids/AADs, the levels of five amino acids/AADs (1-methylhistidine, 5-oxoproline, α-aminobutyric acid, glutamine, and taurine) increased by 7 dpi, whereas the levels of ten amino acids/AADs (4-hydroxyproline, alanine, arginine, asparagine, cysteine, citrulline, glycine, methionine, proline, and tyrosine) decreased. By 14 dpi, the levels of one AAD (3-methylhistidine) increased, whereas the levels of five amino acids/AADs (α-aminobutyric acid, aminoadipic acid, methionine, threonine, valine) decreased. Among the 18 metabolites from the tryptophan pathway, the levels of kynurenine, quinolinic acid, hydroxykynurenine increased by 7 dpi, whereas the levels of indole-3-acetic acid and nicotinamide riboside decreased.
Conclusions
Our data may facilitate understanding the molecular mechanisms of host responses to IAV infection and provide a basis for discovering potential new mechanistic, diagnostic, and prognostic biomarkers and therapeutic targets for IAV infection.
Journal article
Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs
Published 2023
Frontiers in immunology, 14, 1254054
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the “thread” (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo . Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Journal article
Published 2022
Frontiers in Cellular and Infection Microbiology, 12, Art. 960938
Coronavirus disease 2019 (COVID-19) is an extremely contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early disease recognition of COVID-19 is crucial not only for prompt diagnosis and treatment of the patients, but also for effective public health surveillance and response. The reverse transcription-polymerase chain reaction (RT-PCR) is the most common method for the detection of SARS-CoV-2 viral mRNA and is regarded as the gold standard test for COVID-19. However, this test and those for antibodies (IgM and IgG) and antigens have certain limitations (e.g., by yielding false-negative and false-positive results). We have developed an RNA fluorescence in situ hybridization (FISH) method for high-sensitivity detection of SARS-CoV-2 mRNAs in HEK 293T cell cultures as a model. After transfection of HEK 293T cells with plasmids, Spike (S)/envelope (E) proteins and their mRNAs were clearly detected inside the cells. In addition, hybridization time could be reduced to 2 hours for faster detection when probe concentration was increased. Our approach might thus significantly improve the sensitivity and specificity of SARS-CoV-2 detection and be widely applied for the high-sensitivity single-molecular detection of other RNA viruses (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), Hepatitis A virus, all influenza viruses, and human immunodeficiency virus (HIV)) in various types of samples including tissue, body fluid, blood, and water. RNA FISH can also be utilized for the detection of DNA viruses (e.g., Monkeypox virus, human papillomavirus (HPV), and cytomegalovirus (CMV)) by detection of their mRNAs inside cells or body fluid.
Journal article
Innervation and nerve-immune cell contacts in mouse Peyer's patches
Published 2020
Histology and Histopathology, 35, 4, 371 - 383
Neural regulation of the function of the gastrointestinal tract (GIT) relies on a delicate balance of the two divisions of its nervous system, namely, the intrinsic and extrinsic divisions. The intrinsic innervation is provided by the enteric nervous system (ENS), whereas the extrinsic innervation includes sympathetic/parasympathetic nerve fibers and extrinsic sensory nerve fibers. In the present study, we used immunofluorescent staining of neurofilament-heavy (NF-H) to reveal the distribution of nerve fibers and their associations with immune cells inside mouse Peyer's patches (PP), an essential part of gut-associated lymphoid tissue (GALT). Our results demonstrate (1) the presence of an extensive meshwork of NF-H-immunoreactive presumptive nerve fibers in all PP compartments including the lymphoid nodules, interfollicular region, follicle-associated epithelium, and subepithelial dome; (2) close associations/contacts of nerve fibers with blood vessels including high endothelial venules, indicating neural control of blood flow and immune cell dynamics inside the PP; (3) close contacts between nerve fibers/endings and B/T cells and various subsets of dendritic cells ( e.g., B220-, B220+, CD4-, CD4+, CD8-, and CD8+). Our novel findings concerning PP innervation and nerve-immune-cell contacts in situ should facilitate our understanding of bi-directional communications between the PNS and GALT. Since the innervation of the gut, including PP, might be important in the pathogenesis and progression of some neurological, infectious, and autoimmune diseases, e.g., prion diseases and inflammatory bowel disease, better knowledge of PNS-immune system interactions in the GALT (including PP) should benefit the development of potential treatments for these diseases via neuroimmune manipulations.
Journal article
Published 2020
Scientific Reports, 10, 1, Art. 9850
The central nervous system regulates the immune system through the secretion of hormones from the pituitary gland and other endocrine organs, while the peripheral nervous system (PNS) communicates with the immune system through local nerve-immune cell interactions, including sympathetic/parasympathetic (efferent) and sensory (afferent) innervation to lymphoid tissue/organs. However, the precise mechanisms of this bi-directional crosstalk of the PNS and immune system remain mysterious. To study this kind of bi-directional crosstalk, we performed immunofluorescent staining of neurofilament and confocal microscopy to reveal the distribution of nerve fibers and nerve-immune cell associations inside mouse spleen. Our study demonstrates (i) extensive nerve fibers in all splenic compartments including the splenic nodules, periarteriolar lymphoid sheath, marginal zones, trabeculae, and red pulp; (ii) close associations of nerve fibers with blood vessels (including central arteries, marginal sinuses, penicillar arterioles, and splenic sinuses); (iii) close associations of nerve fibers with various subsets of dendritic cells, macrophages (Mac1+ and F4/80+), and lymphocytes (B cells, T helper cells, and cytotoxic T cells). Our data concerning the extensive splenic innervation and nerve-immune cell communication will enrich our knowledge of the mechanisms through which the PNS affects the cellular- and humoral-mediated immune responses in healthy and infectious/non-infectious states.
Journal article
Immunohistochemical detection of haemoglobin subunit epsilon (HBE) in the developing mouse placenta
Published 2019
Journal of Cytology & Histology, 10, 3, Article 1000542
Introduction: Haemoglobin is a widely studied protein due to its important roles in physiology and pathology. Aberrant expression of haemoglobins, including primitive globins, have been reported in various sites and disease states and may have utility in some instances as diagnostic and/or prognostic markers. Despite this, robust detection of haemoglobin epsilon in the placenta during development by immunohistochemistry has not been well documented. Aim: To evaluate a polyclonal antibody against human haemoglobin subunit epsilon (HBE) by immunohistochemistry during primitive erythropoiesis in the developing mouse placenta. Methods and results: An immunohistochemistry protocol was developed using a commercially available anti-human haemoglobin subunit epsilon antibody on the mouse placenta at embryonic day 11.5. Strong and specific cytoplasmic staining was observed in primitive erythroid cells within the blood cell islands. By contrast, the placenta endothelium, mesothelium and mesoderm were all immunonegative for epsilon haemoglobin. Conclusions: An immunohistochemistry protocol for the specific detection of epsilon haemoglobin was successfully developed using mouse placenta tissue. This assay has utility as a tool for the study of erythropoiesis during development and/or detecting the ectopic expression of epsilon globins in disease states such as cancer.
Journal article
Published 2019
European Journal of Histochemistry, 63, 4, Article 3059
The peripheral nervous system communicates specifically with the immune system via local interactions. These interactions include the "hardwiring" of sympathetic/parasympathetic (efferent) and sensory nerves (afferent) to primary (e.g., thymus and bone marrow) and secondary (e.g., lymph node, spleen, and gut-associated lymphoid tissue) lymphoid tissue/organs. To gain a better understanding of this bidirectional interaction/crosstalk between the two systems, we have investigated the distribution of nerve fibres and PNS-immune cell associations in situ in the mouse lymph node by using immunofluorescent staining and confocal microscopy/ three-dimensional reconstruction. Our results demonstrate i) the presence of extensive nerve fibres in all compartments (including B cell follicles) in the mouse lymph node; ii) close contacts/associations of nerve fibres with blood vessels (including high endothelial venules) and lymphatic vessels/sinuses; iii) close contacts/associations of nerve fibres with various subsets of dendritic cells (e.g., B220+CD11c+, CD4+CD11c+, CD8a+CD11c+, and Mac1+CD11c+), Mac1+ macrophages, and B/T lymphocytes. Our novel findings concerning the innervation and nerve-immune cell interactions inside the mouse lymph node should greatly facilitate our understanding of the effects that the peripheral nervous system has on cellular- and humoral-mediated immune responses or vice versa in health and disease.
Journal article
Immunofluorescent characterization of innervation and nerve-immune cell neighborhood in mouse thymus
Published 2019
Cell and Tissue Research, 378, 2, 239 - 254
The central nervous system impacts the immune system mainly by regulating the systemic concentration of humoral substances, whereas the peripheral nervous system (PNS) communicates with the immune system specifically according to local “hardwiring” of sympathetic/parasympathetic (efferent) and sensory (afferent) nerves to the primary and secondary lymphoid tissue/organs (e.g., thymus spleen and lymph nodes). In the present study, we use immunofluorescent staining of neurofilament-heavy to reveal the distribution of nerve fibers and the nerve-immune cell neighborhood inside the mouse thymus. Our results demonstrate (a) the presence of an extensive meshwork of nerve fibers in all thymic compartments, including the capsule, subcapsular region, cortex, cortico-medullary junction and medulla; (b) close associations of nerve fibers with blood vessels (including the postcapillary venules), indicating the neural control of blood circulation and immune cell dynamics inside the thymus; (c) the close proximity of nerve fibers to various subsets of thymocytes (e.g., CD4+, CD8+ and CD4+CD8+), dendritic cells (e.g., B220+, CD4+, CD8+ and F4/80+), macrophages (Mac1+ and F4/80+) and B cells. Our novel findings concerning thymic innervation and the nerve-immune cell neighborhood in situ should facilitate the understanding of bi-directional communications between the PNS and primary lymphoid organs. Since the innervation of lymphoid organs, including the thymus, may play essential roles in the pathogenesis and progression of some neuroimmune, infectious and autoimmune diseases, better knowledge of PNS-immune system crosstalk should benefit the development of potential therapies for these diseases.
Journal article
Published 2018
Journal of Histochemistry & Cytochemistry, 66, 11, 775 - 785
The thymus is innervated by sympathetic/parasympathetic nerve fibers from the peripheral nervous system (PNS), suggesting a neural regulation of thymic function including T-cell development. Despite some published studies, data on the innervation and nerve-immune interaction inside the thymus remain limited. In the present study, we used immunofluorescent staining of glial fibrillary acidic protein (GFAP) coupled with confocal microscopy/three-dimensional (3D) reconstruction to reveal the distribution of non-myelinating Schwann cells (NMSC) and their interactions with immune cells inside mouse thymus. Our results demonstrate (1) the presence of an extensive network of NMSC processes in all compartments of the thymus including the capsule, subcapsular region, cortex, cortico-medullary junction, and medulla; (2) close associations/interactions of NMSC processes with blood vessels, indicating the neural control of blood flow inside the thymus; (3) the close "synapse-like" association of NMSC processes with various subsets of dendritic cells (DC; e.g., B220+ DCs, CD4+ DCs, and CD8+ DCs), and lymphocytes (B cells, CD4+/CD8+ thymocytes). Our novel findings concerning the distribution of NMSCs and the associations of NMSCs and immune cells inside mouse thymus should help us understand the anatomical basis and the mechanisms through which the PNS affects T-cell development and thymic endocrine function in health and disease.